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� Quantitative analysis of the

plasma state by the single Lang-

muir probe.

� Compactness of a-C films by

testing their density with X-ray

reflectivity method.

� Reveal plasma states and film

compactness on corrosion resis-

tance and conductivity.
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In proton exchange-membrane fuel cells, the compactness and composition of amorphous

carbon (a-C) films directly affect the interface-induced degradation of a-C-coated metallic

bipolar plates, but their roles and synergistic effects are ambiguous. In this study, by

changing the working pressure, the compactness and composition of a-C are adjusted, and

the relationship among the plasma state, microstructure, and performance of coated 316L

stainless steel are studied. Results show that, at 2 mTorr, a high ionization degree of the

plasma causes high compactness (highest density 2.52 g/cm3) and large sp2 cluster size in

a-C films, resulting in their best performance. At 11 mTorr, the low ionization degree

causes their loose structure and large sp2 cluster size. The possible galvanic coupling effect

can result in serious interface damage and the highest Fe ions concentration of 13.05 ppm
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Bipolar plates
Compactness and composition

Plasma states
after a potentiostatic test. Thus, high compactness and large sp2 cluster sizes should be

obtained simultaneously to improve their performance.

© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction
To solve the global problems created by the energy crisis and

environmental pollution, various forms of fuel cells have been

under development for decades. For example, proton

exchange-membrane fuel cells (PEMFCs) have been widely

used in transportation, aviation, etc., owing to their advan-

tages of low operating temperature, zero emission, and high

energy conversion rate [1,2]. As a core multifunctional

component, bipolar plates (BPPs) should provide high elec-

trical and thermal conductivity, low interfacial contact resis-

tance (ICR), and good corrosion resistance in an acidic and

humid working environment, BPPs performance can directly

affect the service life and commercialization process of

PEMFCs.

Metallic BPPs are promising candidates as substitutes for

traditional graphite plates due to their easymachinability, low

cost, and good mechanical properties3-5. Nevertheless, under

the harsh acid conditions of PEMFCs,metallic BPPs suffer from

severe corrosion. The subsequent dissolution of metal ions

and formation of a passive layer would result in deteriorated

performance and reduced service life of PEMFCs [3e5].

Surface coating technology can not only maintain the

excellent mechanical properties and good machining prop-

erties of metal plates, but also improve their electrical con-

ductivity and corrosion resistance, thus ensuring the long-

term effective operation of PEMFCs. Among the possible op-

tions, noble metal films have excellent corrosion resistance

and electrical conductivity, but their high cost is not condu-

cive to large-scale commercial production [6e8]. Metal nitride

films have low cost and high electrical conductivity, but they

are prone to local corrosion, which limits their application in

the corrosion resistance of metal plates [9e12]. Although

some metal oxide films, such as IrO2, and SnO2 could ensure

both high conductivity and corrosion resistance in harsh

acidic environment, the key barrier for their application were

the poor adhesion and weak stability [13e15]. Owing to their

excellent conductivity, corrosion resistance, and low cost for

large-scale production, amorphous carbon (a-C) films have

attracted extensive attention and have shown tremendous

potential for the protection of metallic BPPs [16]. However, in

practical applications, the degradation of a-C/metallic BPPs

still exists during long-term operation [17], due to the un-

avoidable interface damage and increased interfacial contact

resistance (ICR) [18e20].

Many researchers have tried to retard the interface damage

by changing the sp2/sp3 ratio and the compactness of the a-C

films [21,22]. For example, Wu et al. [23] fabricated a series of

a-C films with different trans-layer by direct current magne-

tron sputtering (DCMS) and claimed that the interlocking

structure between the Cr intermediate layer and the a-C film
prevented the corrosive liquid from reaching the 304 stainless

steel, which greatly improved the performance of the sub-

strate.Wu et al. [24] found that a higher sp2/sp3 ratio in a-C can

cause a lower ICR. From the point of compactness, Bi et al. [25]

confirmed that the corrosion resistance had a very strong

correlation with the compactness and composition of a-C

films fabricated by DCMS. Yi et al. [26] conducted 24 h elec-

trochemical corrosion durability tests and found that the a-C

films with compact structure and high sp2 content could

greatly optimize the performance of stainless steel bipolar

plates. Our previous work also affirmed that the residual

chromium oxides at the a-C/316L stainless steel interface

resulted in increased ICR values [27], and the interlocking

interface structure can hinder the interface damage [28,29].

Specifically, both sp2/sp3 and the compactness affect the

performance of a-C/metallic BPPs, but the role of each factor

and their synergistic effects are ambiguous. In particular, the

compactness of a-C films is usually determined from their

morphology in this field, and qualitative or quantitative ana-

lyses are necessary. In addition, the two parameters mainly

depend on the characteristics of the plasma during the

deposition processes.

However, research on the influence of the plasma state is

limited in this area, which hinders the optimization of a-C/

metallic BPPs in PEMFCs. In DCMS, the working pressure is

easy to adjust and can significantly change the incident ion

flux and ion energy, which will directly affect the growth

process and the microstructure of a-C films [30e32]. There-

fore, in this work, a series of a-C films were deposited on 316L

stainless steel (316LSS) substrates using DCMS, and the sp2/

sp3 ratio and compactness were adjusted by changing the

working pressure. Plasma states were analyzed using a single

Langmuir probe. The compactness of the a-C films was

estimated according to the sp2/sp3 ratio and density, which

were characterized by XPS and the X-ray reflectivity (XRR)

method, respectively. Their corrosion resistance was evalu-

ated by typical electrochemical corrosion tests, according to

the U.S. Department of Energy (DOE 2025) standard [33]. The

ICR was also measured before and after the electrochemical

corrosion tests. The effects of the compactness and compo-

sition of the a-C films on their corrosion resistance and

conductivity were discussed, which could provide new in-

sights into the design of high-performance a-C films for

metallic BPPs in PEMFCs.
Experimental section

Sample preparation

316LSS (F1.5 mm � 3 mm) plates and p-type Si (100) wafers

were used as substrates. All a-C films were deposited by the
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DCMS technique using a graphite (380mm � 100 mm� 7mm,

99.99wt%) target and a chromium (380mm� 100mm� 7mm,

99.999 wt%) target, as shown in Fig. 1. Prior to deposition, the

substrates were cleaned with acetone and alcohol in an ul-

trasonic cleaner for 30min. Subsequently, the substrates were

installed on a substrate holder in the chamber.When the base

pressure in the vacuum chamber was below 3 � 10�2 mTorr,

Ar gas was introduced, and the targets were cleaned by

magnetron sputtering with the shutters closed for 10min. The

substrates were then etched with Ar plasma by the linear ion

source under a DC pulsed substrate bias of �50 V for 30 min to

remove the surface oxide layer. To increase the film-substrate

adhesion strength, a chromium interlayer with a thickness of

95 ± 10 nm was deposited by high-power impulse magnetron

sputtering with a pulse width and frequency of 100 ms and

500 Hz, respectively [34]. Then, a 200 nm a-C layer was

deposited by DCMS with a bias of �200 V, a sputtering power

of 1.2 kW. The working pressure (2, 5, 8, and 11 mTorr) was

varied to adjust the plasma state and themicrostructure of the

a-C films. Additional experimental details can be found in our

previous publications [35,36].

Plasma diagnostic technology

The effect of working pressure on the growth of a-C films was

investigated through plasma diagnosis using the single

Langmuir probe system (LP-500 ALP system, Impedans Ltd.).

The single Langmuir probe was made of tungsten wire and

had a radius of 0.35 mm. The length of the tip exposed in the

plasma was 8.5 mm. The unexposed part of the tungsten wire

was encapsulated in a ceramic tube. The distance between the
Fig. 1 e The schematic graph of the DCMS equipm
probe tip and the target surface was 10 cm. The time-integral

mode was applied during the tests. A variable voltage was

supplied to this probe in the range �12 V to þ2 V, and the

current-voltage (IeV) characteristics were measured. In this

study, the electron density was used to determine the plasma

conditions by the variations in the working pressure. In quasi-

neutral non-equilibrium plasma, the electron density ne can

be determined from the following equation:

ne ¼ 1
0:6es

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi

kTe
,Iis

s
(1)

where e is the charge of the electron, s is the area of the

exposed probe surface,Mi is the ionmass of the gaseous ion, k

is Boltzmann's constant, and Iis is the ion saturation current.

The plasma potential was also measured to estimate the

change in the incident ion energy, probably with the combi-

nation of substrate bias.

Microstructural characterizations

XRR analysis was employed to investigate the density of the a-

C films using an X-ray diffractometer (SmartLab, Rigaku). The

Cu ka radiation source and the wavelength of 1.54 �A were

selected for the tests, and the incident angle was adjusted in

the range of 0.03e1.63� and measured with a step of 0.004�.
The thickness and density of the films were analyzed using

the GlobalFit software, and a theoretical model was generated

to fit the experimental data [37].

The thickness, surface, and cross-sectional morphology of

the a-C films were studied by a scanning electron microscope

(SEM, Verios G4 UC, US) and a scanning probe microscope
ent and the single Langmuir probe system.
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(SPM, Dimension 3100, US). X-ray photoelectron spectroscopy

(XPS, Axis ultradld, Japan) was used to evaluate the compo-

sition and atom binding state in the a-C films. A confocal

micro-Raman spectrometer (Renishaw inVia Reflex, UK,

532 nm) was used to analyze the carbon bond structure [38]. A

transmission electron microscope (TEM, Tecnai F20, US) was

used to obtain the morphology. Selected area electron

diffraction (SAED) and the electron energy loss spectrum

(EELS) were also used to obtain the microstructure and sp2

fraction of the a-C films.

Electrochemical behaviors and ICR

To analyze the corrosion resistance of the modified 316LSS,

electrochemical corrosion tests were carried out using the

Gamry electrochemical workstation (Reference 600þ, US).

Corrosion behavior was measured using a traditional three-

electrode system. The Ag/AgCl electrode was used as the

reference electrode, the sample acted as the working elec-

trode, and the platinum plate was used as the counter elec-

trode. During electrochemical corrosion tests, samples were

conducted under simulated operating conditions of PEMFCs

(0.5 M H2SO4 þ 5 ppm HF, 80 �C). Before the electrochemical

corrosion tests, the open circuit potential (OCP) continued to

run for 1 h to ensure the electrochemical stability of the sys-

tem [16,39,40]. Then the potentiodynamic polarization was

measured from �0.2 V vs. Ag/AgCl ranging to þ1.2 V vs. Ag/

AgCl at a scanning rate of 0.5 mV/s. Following that, the

potentiostatic test was carried out at 0.6 V vs. Ag/AgCl for 12 h

to investigate the corrosion resistance and service life of the

modified 316LSS plates in the simulated PEMFC cathode

operating environment. Additionally, after the 12 h potentio-

static test, the corrosion solution was collected, and the con-

centrations of Fe and Cr ions were detected by an inductively

coupled plasma emission spectrometer (ICP-OES, Spectro

Arcos II, Germany) [41,42].

To assess the ICR, voltammetry was performed to acquire

the electrical resistivity between the coated samples and gold-

coated copper plates [2,43,44]. All the test samples were

sandwiched between two carbon papers (Toray TGP-H-060)

with an applied pressure of 1.38 MPa (DOE2025) and 1.5 MPa
Fig. 2 e (a) Typical IeV curve at different working pressure con

during the deposition process of a-C films at different working
(DOE2020), respectively. The ICR values were calculated ac-

cording to the DOE standard.
Results and discussion

Film growth and density

In this study, the plasma density and plasma potential during

the deposition of a-C films were measured. Fig. 2a shows the

typical IeV curvemeasured by the single Langmuir probewith

the variation of working pressure. Generally, the IeV charac-

teristics can be divided into three regions: (1) ion-current

saturation region (Iis), (2) transition region, and (3) electron-

current saturation region (Ies). The Iis region showed that the

probe current was mainly due to the positive ion being

attracted to the probe. The transition region showed that

there was electron diffusion to the probe. The current varied

exponentially with the probe voltage until the voltage was

equal to the plasma potential (Vp). The Ies region occurred

when the probe current wasmainly due to the electrons being

attracted to the probe, which implies that we only need to

analyze the electron density and plasma potential. Thus, the

transition region and the ion-current saturation region need

to be considered, as shown in Fig. 2a. With the same probe

voltage, the probe current increased with the variation in

working pressure from 2mTorr to 8mTorr increase in electron

density. The IeV curve at 11mTorr coincidedwith the curve at

8 mTorr, which means that a further increase in the working

pressure did not lead to a higher electron density.

In Fig. 2b, from 2 mTorr to 8 mTorr, both the electron

density and plasma potential showed continuous upward

trends. The kinetic energy of individual incident ions would

have a small increase due to the increase in plasma po-

tential from approximately 3 Ve5 V, since the working

pressure increased four times, while the corresponding

electron density only increased by 33%. This means that the

ionization degree of the DCMS plasma decreased sharply

with an increase in the working pressure. In general, the

improved Ar atom density leads to an increase in the elec-

tron collision probability, and the electron temperature is
ditions; (b) the electron density and the plasma potential

pressures.
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reduced in the constant discharge power mode; that is, the

ratio of carbon atoms in the plasma increases. When the

working pressure was increased to 11 mTorr, both the

electron density and plasma potential decreased, suggesting

a lower ionization degree and kinetic energy of individual

incident ions.

XRR is a non-destructive technique for characterizing film

thickness, surface roughness, and density with high resolu-

tion [45,46]. In Fig. 3, the experimental data of the a-C films at

different working pressures matched each simulated section

well. Moreover, the fringe period can could be observed in

every fitting curve, which indicates indicated the single-layer

structure of the a-C films. By fitting the critical angle (qc) in the

curve, the average density (r) can be calculated according to

the following formula [47e49].

r¼
�

pq2c

NArel
2

��
MC

ZC

�
(2)

where qc is the critical angle in radians, re is the electron

radius, NA is Avogadro's number, l is the wavelength used by

the instrument, ZC is the atomic number of the C atom, andMC

is the molar mass of the C atom. The r values of the as-
Fig. 3 e Themeasured and simulated X-ray reflectivity data

for a-C films deposited at various working pressures.

Fig. 4 e (a) ID/IG ratio, G peak position, and G FWHM; (b) sp2, sp3, a

at 2e11 mTorr.
deposited a-C films at 2, 5, 8, and 11 mTorr were 2.52, 2.01,

2.04 and 2.18 g/cm3, respectively.

Microstructural characterization

The Raman spectra were divided into two peaks by Gaussian

functions to ensure that the center of the D peak was around

1350 cm�1, and that of the G peakwas around 1560 cm�1 [38,50],

as shown in Fig. S2a the Supporting Information. In general, the

D and G peaks represent the breathing mode of the carbon

atoms in the ring and the tensile vibration of the carbon atoms

in both the ring and carbon chains, respectively [51e54]. The

sp2/sp3 ratio, sp2 cluster size, and degree of disorder of carbon

atoms can be obtained from theG peak position, halfmaximum

of the G peak (G FWHM), and ID/IG ratio of the peak area [55].

As shown in Fig. 4a, with an increase in the working

pressure from 2 to 11 mTorr, both the G peak position and G

FWHM remained stable around 1546 cm�1 and 190 cm�1,

respectively, indicating a similar sp2 hybridization percentage

and structural disorder. The ID/IG ratio, which corresponds to

the sp2 cluster size in the a-C films, exhibited irregular

changes with the working pressure. From 2 to 5 mTorr, the ID/

IG ratio first decreased from its maximum value of 2.4 to 1.61,

then increased to 1.98 when the working pressure was further

increased to 11 mTorr, thus indicating the smallest size of the

sp2 cluster occurs at 5 mTorr.

Using XPS, the C and O elements were identified; the O

element mainly came from residual oxygen in the chamber

and pollutants in the air [56]. In Fig. S2b the Supporting In-

formation, 20% Lorentzian and 80% Gaussian functions were

used to fit the C 1s peak [57,58]. The content of sp2 (284.6 eV),

sp3 (285.4 eV), and CeO/C]O (286.6 eV) hybrid carbon in the a-

C films were calculated by fitting the peak areas, as shown in

Fig. 4b, [59e61]. From 2 to 11 mTorr, all the three main species

remained almost unchanged, and the sp2 hybridization per-

centage reached around 55%. This high sp2 content was

favorable for achieving a better electron transfer capacity [62].

Electrochemical properties evaluation

The electrochemical properties of the coated 316LSS were

measured in a simulated PEMFC environment. As shown in

Fig. 5a, the corrosion current densities of all the coated 316LSS
nd CeO/C]O hybrid carbon contents of a-C films deposited

https://doi.org/10.1016/j.ijhydene.2022.01.173
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samples were less than 1 mA/cm2 (DOE 2025 standard) and

much lower than that of the bare 316LSS sample [63]. In

Fig. 5b, with the increase in working pressure from 2 to 11

mTorr, the corrosion current density showed an obvious

increasing trend, from its minimum value of 0.27 mA/cm2 at 2

mTorr to 0.68 mA/cm2.

To assess the service life of the coated samples, potential

holding tests were conducted for 12 h. In Fig. 5c, all the

corrosion current densities decreased in the first 2 h and then

stabilized. After the 12-h test, the final stable current densities

increased with the increase in working pressure. The

maximum value of the corrosion current density reached

0.006 mA/cm2 at 11 mTorr, as shown in Fig. 5d, indicating the

deterioration of the corrosion resistance of the a-C films with

increasing working pressure.

Table 1 presents the concentrations of Fe and Cr ions in

the corrosion solution after the long-term potentiostatic
Fig. 5 e Electrochemical polarization measurement in simulated

curves, (b) passivated current densities; (c) potentiostatic tests c

Table 1 e Concentrations of corrosion ions in the corrosion so

Sample Concentrations of Cr ion

Substrate 0.61

a-C film (2 mTorr) e

a-C film (5 mTorr) e

a-C film (8 mTorr) 0.03

a-C film (11 mTorr) 2.69
test. At 2 mTorr, no Cr or Fe signal could be detected, sug-

gesting effective protection for 316LSS. At 5 and 8 mTorr, the

Fe element could be detected, but its concentration was

lower than that of bare 316LSS [63], indicating mild damage

to 316LSS. At 11 mTorr, both the Cr and Fe ion concentra-

tions suddenly increased, and the Fe ion concentration even

exceeded 13 ppm, which was 20 times higher than that of

bare 316LSS. This phenomenon may be due to the galvanic

coupling between 316LSS and the a-C/Cr system in this

corrosive solution, which can accelerate the corrosion of

316LSS [64].

ICR of the samples before and after potentiostatic
polarization test

Table 2 shows the ICR values before and after potentiostatic

polarization tests under a compaction pressure of 1.5 MPa. For
cathode environment (a) potentiodynamic polarization

urves, and (d) stable current densities after 12 h.

lution after 12 h of the potentiostatic test.

(ppm) Concentrations of Fe ion (ppm)

9.65

e

0.33

0.57

13.05
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Table 2e The ICR values of the coated samples before and
after the potentiostatic tests.

Sample ICR (before tests)
(mU$cm2)

ICR (after tests)
(mU$cm2)

1.38 MPa 1.5 MPa 1.38 MPa 1.5 MPa

a-C film (2 mTorr) 2.2 2.0 2.9 2.7

a-C film (5 mTorr) 3.0 2.7 3.4 3.1

a-C film (8 mTorr) 3.3 3.0 3.7 3.4

a-C film (11 mTorr) 3.9 3.6 9.5 8.7
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bare 316LSS, its ICR values before and after potentiostatic po-

larization tests are 12.10 and 19.28 mU $ cm2 [63], respectively.

All ICR values before and after the tests were lower than

10mU $ cm2 (DOE 2025 standard), suggesting that the a-C films

could significantly enhance the electrical conductivity. After

the potentiostatic polarization test, the ICR of all the coated

samples increased to a certain extent. At 1.38 MPa, from 2 to 8

mTorr, the ICR increase ratio was less than 32%; while, at 11

mTorr, the ICR increase ratio was larger than 144%, i.e., from

3.9 to 9.5 mU $ cm2, which was coincident with its worst anti-

corrosion property.

Microstructural characterization after the potentiostatic
tests

The bonding structures in the a-C films before and after the

potentiostatic tests were compared. In Fig. 6, both the sp2/sp3

ratio and CeO/C]O hybrid carbon content in the a-C film

were nearly the same, suggesting no obvious damage and a

stable surface chemical composition of the a-C films during

the test.

Themicrostructural evolution inside the a-C filmswas also

investigated. In Fig. 7a and c, three interesting areas of the a-C

film prepared at 5mTorr aremarked, namely, the near surface

(labeled as a1 and a2), middle part (labeled as b1 and b2), and

near interface area (labeled as c1 and c2). EELS is the preferred

method for the quantitative extraction of sp2 from carbon-

based materials at high spatial resolution [65]. The carbon-

based part of the spectrum was decomposed into p* and s*

characteristics by the “Two-window method” [66]. In Fig. 7b

and d, the p* peak center at 285 eV was fitted by the Gaussian

function, and the integration of the peak s* in the small en-

ergywindow of 290e305 eVwas performed. The content of sp2

(x) is calculated using the following equation [66,67]:
Fig. 6 e Composition of a-C films after potentiostatic test (a) Th

carbon content.
ðp*=s*Þfilm
ðp*=s*Þstd

¼ 3x
4� x

(3)

where (p*/s*)film and (p*/s*)std represent the integral area

ratio of the p* and s* peaks for the a-C film and the reference

sample, respectively. Highly oriented pyrolytic graphite

(HOPG) was selected as the standard sample for the analysis of

carbon bonds. The calculated sp2/sp3 values at areas b1/b2 and

c1/c2 of the a-C film were all approximately 1.13, which is

consistent with the previous XPS analysis. However, the sp2/

sp3 values at the position a1/a2 near the a-C film surface were

all approximately 1.35, whichwas slightly higher than the sp2/

sp3 values at other positions. The EELS curves in the same

areas were nearly unchanged after the polarization test,

confirming that the composition of the a-C film remained

stable.

Both the XPS and EELS results showed that the long-term

potentiostatic test had little effect on the structure of the a-

C films.

Relationship between working pressure and performance
degradation

To reveal the relationship between the working pressure and

the performance of a-C films in PEMFCs, the plasma states

during deposition, compactness, and composition of the as-

deposited a-C films should be discussed.

From the microstructural characterization of the a-C film,

before and after the long-term electrochemical corrosion, a

stable structure of a-C films and interface damage can be

confirmed. However, the damage of the interface was affected

by the compactness and composition of the a-C film, which

can be greatly influenced by the plasma state. First, the

structure and growth process of the a-C films can be affected

by the energy of incident particles on the substrates during

deposition [68,69]. According to the plasma diagnosis results,

when the pressure increased 4 times; that is, from 2 to 8

mTorr, although both the electron density and plasma po-

tential in the cavity increased, the actual ionization degree of

the DCMS plasma decreased sharply. Finally, less energetic

ions in the plasma resulted in an incompact structure and a

lower density of the a-C films.

For these hydrogen-free a-C films, their density is mainly

related to the sp2/sp3 ratio and the presence ofmicrovoids and

defects [49,70]. As confirmed by Raman, XPS, and EELS
e C1s core-level spectra, (b) sp2/sp3 and CeO/C]O hybrid
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Fig. 7 e The STEM image of the a-C film deposited at 5 mTorr and EELS spectra at different areasmarked as a1-c1 and a2-c2 (a,

b) before and (c, d) after the long-time potentiostatic test.

Fig. 8 e The degradation mechanism of a-C film deposited at low and high working pressure; (b) Interfacial corrosion

process with dense structures; (c) a-C film structure with high working pressure; (d) Interfacial corrosion process with loose

structures.
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analyses, in theworking pressure range of 2e11mTorr, the sp2

content of the a-C films remained stable. In this case, their

density measured by XRR can roughly corresponds to the

number of microvoids or defects in the a-C films; that is, the

higher density of the a-C films indicated fewer defects and a

compact structure.

In the corrosion and ICR tests, the a-C film prepared at 2

mTorr exhibited the best corrosion resistance and conduc-

tivity. Two main factors should be considered: First, this

sample had the highest density approximately 2.52 g/cm3 and

a compact structure, which can hinder the corrosion liquid

entering the a-C film and cause less oxide to form at the

interface. In addition, the sample had themaximum ID/IG ratio

of 2.4 and the largest sp2 cluster size, which is conducive to

electron transport, resulting in the minimum ICR before

corrosion tests, as shown in Fig. 8(aeb). Because of its superior

corrosion resistance, no Fe and Cr signals could be detected in

the corrosion solution, and the ICR after 12 h of polarization

test was still the lowest.

At 11 mTorr, the density and compactness of the a-C films

decreased, while its sp2 cluster size was still large, which can

lead to better conductivity. During the corrosion test, the

corrosion solution can reach the 316LSS substrate faster and

easily move along the loose structure and defect of the a-C

film. The possible galvanic coupling between 316LSS and the

a-C/Cr system can cause serious damage and more oxides at

the interface, resulting in worse corrosion resistance, more Fe

and Cr concentration in the corrosive solution, and higher ICR,

as shown in Fig. 8(ced).
Conclusions

In this study, a series of a-C/Cr/316LSS samples were prepared

using DCMS. The effects of compactness and composition on

the performance of the a-C films in PEMFCswere investigated.

The results showed that, with an increase in the working

pressure from 2 to 11 mTorr, the ionization degree of the

plasma decreased sharply, which caused a decrease in the

compactness of the a-C films. The a-C film deposited at 2

mTorr had both the highest compactness (2.52 g/cm3) and

large sp2 cluster size, demonstrating the best corrosion

resistance and conductivity. For the a-C film with low density

and small sp2 cluster size, performance degradation and

interface damagewere observed; at 11mTorr, the a-C film had

both a loose structure and large sp2 cluster size. The possible

galvanic coupling between 316LSS and the a-C/Cr system can

result in serious performance degradation. These results

reveal that high-density plasma is pivotal to obtain a compact

microstructure of the a-C film; both high compactness and sp2

clusters of the a-C should be simultaneously considered for

the protection of metallic BPPs in PEMFCs.
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