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An interatomic potential model that can simultaneously describe metallic, covalent, and ionic bonding is
suggested by combining the second nearest-neighbor modified embedded-atom method (2NNMEAM) and the
charge equilibration (Qeq) method, as a further improvement of a series of existing models. Paying special
attention to the removal of known problems found in the original Qeq model, a mathematical form for the atomic
energy is newly developed, and carefully selected computational techniques are adapted for energy minimization,
summation of Coulomb interaction, and charge representation. The model is applied to the Ti-O and Si-O binary
systems selected as representative oxide systems for a metallic element and a covalent element. The reliability
of the present 2NNMEAM + Qeq potential is evaluated by calculating the fundamental physical properties of a
wide range of titanium and silicon oxides and comparing them with experimental data, density functional theory
calculations, and other calculations based on (semi-)empirical potential models.
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I. INTRODUCTION

As structural changes on an atomic scale are found to affect
various materials properties or device performances, analysis
of materials behavior on an atomic scale is becoming more
and more important. Understanding materials phenomena on
the atomic scale is rather tricky with experimental approaches
but atomistic computer simulations can be an effective tool
to obtain valuable information. Recently, density functional
theory (DFT) calculations have been widely used to estimate
materials properties such as energetics, crystal structures,
elastic constants, electronic structures, etc. Though the DFT
calculations have a high computational accuracy, the number
of atoms that can be dealt with is limited to below 1000
atoms. Atomistic simulations based on (semi-)empirical in-
teratomic potentials can be effectively employed to simulate
structures of thousands or even millions of atoms, and can
be a good companion to the DFT calculations. Important
here is that the interatomic potential should be able to
reproduce correctly various fundamental physical properties
(structural, elastic, defect, surface, thermal properties, etc.)
of relevant elements and multicomponent materials systems.
With developments of interatomic potential formalisms that
can cover successfully a wide range of elements and mul-
ticomponent systems, the (semi-)empirical atomistic simula-
tion of realistic materials systems is becoming increasingly
feasible.

Many empirical interatomic potential models have been
proposed for various materials with ionic, metallic, or covalent
bonding nature. Molecular dynamics simulations for ionic liq-
uids were performed for the first time in the early 1970s [1,2].
The interatomic potential used for ionic liquids is the Born-
Mayer-Huggins (BMH) [3] type pairwise potential that con-
tains a Coulomb interaction term based on fixed point charges
as well as a pairwise term. As crystallographic information
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becomes available for ionic compounds (oxides), the BMH
model is upgraded so that it can describe structural properties
of oxides, for example, SiO2. The representative BMH models,
TTAM [4,5] and BKS [6], fairly well describe the structural
properties of various SiO2 polymorphs, such as α-quartz,
α-cristobalite, coesite, stishovite, etc. The BMH model is fur-
ther modified so that it can consider electronic polarization [7],
and it is finally reported that a potential based on the Morse-
Stretch (MS) pairwise potential instead of the Born-Mayer type
and containing a dipole polarization term performs better in de-
scribing structural properties of SiO2 [8]. The common feature
of all the above-mentioned potentials is that they are based on
fixed charges, which means the variation of charge state during
a reaction (oxidation, for example) cannot be investigated
using atomistic simulations based on those potentials. Another
problem of the potentials is that the pairwise potential (BM or
MS) for the nonelectrostatic part is not suitable for description
of realistic elements (silicon, for example).

It has been known that it is difficult to describe metallic
or covalent elements using pairwise potentials, and it is not
until the mid-1980s that many-body potentials suitable for
realistic elements are proposed. The first many-body potential
is the embedded-atom method (EAM) potential [9,10], which
successfully describes a wide range of fundamental physical
properties of metallic elements. The EAM is mainly for fcc
elements, but is modified so that the potential can consider
bonding directionality and thus deal with bcc, hcp, diamond-
structured, and even gaseous elements. The modified EAM
(MEAM [11–13]) is further modified so that it can consider up
to second nearest-neighbor interactions as well as first nearest-
neighbor interactions, removing some critical shortcomings
found in the original version, and is named the second nearest-
neighbor MEAM (2NNMEAM [14]). The 2NNMEAM model
has been applied to a wide range of elements with metallic and
covalent bonding nature and their alloy systems [15].

Another advancement achieved in the solid-state modeling
during the same period (early mid-1980s) is the invention of the
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universal equation of state by Rose et al. [16–19], which states
that the cohesive energy of metallic or covalent solids can be
described using one mathematical expression when properly
rescaled. Abell [20] shows that the MS pairwise potential
can describe well the universal behavior, and Tersoff [21,22]
formulates a potential model based on the MS potential
introducing a bond-order term that considers many-body
effects. While the basic concept of the EAM-series potentials
originates from metallic bonding, the Tersoff potential is
designed to describe bond breaking and new bond formation of
covalent materials. The Tersoff potential is initially utilized for
modeling silicon and carbon, and the formalism is extended to
hydrocarbons by Brenner [23]. The Brenner potential, which is
also called a reactive empirical bond-order potential (REBO),
is modified for better description of hydrocarbon molecules as
well as diamond, and is named the second-generation REBO
(REBO2 [24]). The REBO potential has been combined with
the Lennard-Jones (LJ) potential to model the van der Waals
interaction, and a bond-order dependent switching function
is introduced for a more realistic transition between LJ and
REBO, and is named adaptive intermolecular REBO [25].

The fact that interatomic potential models have been
developed separately for elements with different bonding
natures (ionic, metallic, and covalent) means that atomistic
simulation techniques could not be used for materials systems
with complex bonding natures such as metal/metal oxides or
metal/ceramic composites. Both the EAM-2NNMEAM and
the Tersoff-REBO2 potentials have continuously extended the
applicable materials types. Starting from metallic bonding,
the MEAM is extended to covalent materials, such as silicon
and carbon, and is recently further extended to saturated
hydrocarbon systems [26]. On the other hand, the Tersoff-
REBO2, mainly designed for covalent materials, has been
continuously modified to extend its coverage to metallic
systems [27,28]. However, those potentials commonly need
to be further modified so that they can also consider ionic
bonding.

The many-body potentials could be combined with the
above-mentioned classical Coulomb interaction term based
on fixed point charges. However, a more advanced extension
to the ionic bonding nature becomes feasible thanks to the
development of a charge equilibration (Qeq) scheme [29]
that leads to equilibrium local atomic charges depending on
geometry on the basis of the principle of equal chemical
potential. Compared to the classical Coulomb potentials based
on fixed point charges, this potential allows variation of charge
state depending on the atomic environment and also considers
radial distribution of electron density instead of assuming
the point charge. The Qeq scheme is first combined with
MS pairwise potentials (MS-Q) to describe SiO2 [30] and
Ti oxides [31,32], and is then combined with many-body
potentials.

The first attempt to combine a many-body potential and
Qeq scheme is made by Streitz and Mintmire [33] using
the metallic EAM formalism. Zhou et al. [34] proposed a
modified charge transfer–embedded-atom method potential,
hereafter referred to as the Zhou potential, to overcome a
charge instability problem and a limitation revealed when
applied to metal-oxide systems of more than one metallic
element, found in the original EAM + Qeq potential [33]. This

potential is then applied to multicomponent metal-oxide [35]
and alkali halide systems [36,37]. Recently, Lazić et al. [38]
propose a potential for the Al-O system based on the Zhou
potential in combination with a reference free version of
modified EAM (RFMEAM). More recently, a combination
of the Zhou potential with the MEAM is also reported [39] for
an application to the Li2MnO3 compound.

The combination between the Tersoff potential and the Qeq
scheme is first reported by Yasukawa [40] with an application
to the Si/SiO2 system. However, Sinnott, Phillpot, and co-
workers [41] find that a charge instability problem inherent to
the original Qeq scheme [29,33] occurs also in the Yasukawa
potential and propose a modified Tersoff + Qeq potential,
naming it the charge optimized many-body (COMB) potential.
The COMB potential has been modified several times. The
first generation COMB (COMB1) potential is for the above-
mentioned Si/SiO2 system. The COMB1 can be regarded as a
slightly modified version of the Yasukawa potential to avoid
the charge instability, being based on an effective point charge
concept as in the original formalism. The potential is modified
in a way that considers radial distribution of electron density
instead of the point charge, and is applied to the Si/SiO2

system [42] again and also to other metal/metal-oxide systems
such as Hf/HfO2 [43] and Cu/Cu2O [44]. This potential is
modified again to include charge-core charge interactions and
a polarization scheme, and is applied to the Cu/Cu2O [45]
system again and to the Cu/ZnO [46] system. Most recently,
the third generation COMB (COMB3), which uses terms from
the latest COMB2 version [45] for electrostatic effects and
from REBO2 for short-range interactions, is proposed and
applied to C/H/O/N [47], U/UO2 [48], and Ti/TiO2 [49].
Details of the history for the COMB potential development
are well summarized elsewhere [50,51].

Another many-body potential that considers variable
charges in ionic bonding is the reactive force fields (ReaxFF)
potential developed by van Duin et al. [52]. ReaxFF also uses a
bond-order concept and includes Coulomb interaction, van der
Waals interaction, as well as a nonelectrostatic bonding energy
term, similar to the COMB potentials. ReaxFF is developed
much earlier than COMB. ReaxFF is designed so that it can
deal with a wide range of materials (with ionic, metallic,
covalent, and even van der Waals bonding nature) from the
beginning, while COMB has been continuously modified to
extend its coverage. The basic concept and potential formalism
of ReaxFF is much different from that of COMB even though
the materials systems that can be dealt with using those
potentials are now similar. For example, ReaxFF explicitly
includes energy terms related to bond angle and torsion
separately, while those terms are involved in the bond-order
parameter in COMB. ReaxFF has been applied to hydrocarbon
materials [53–58], Si-related materials [59–62], and even to
metallic oxides [63–65]. More details on the comparison
between ReaxFF and COMB can be found in a recent review
article [50].

Three classes of the interatomic potential family—the EAM
or RFMEAM + Qeq, COMB, and ReaxFF—have been briefly
reviewed. One can see that the extension of the EAM or
RFMEAM + Qeq potential to a wider range of materials is
relatively not very active, while that for the COMB and ReaxFF
is almost explosive. The difference in activity between the
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EAM and bond-order potentials is partly because the type of
elements (fcc metallic) dealt with using the EAM is somewhat
limited compared to the bond-order potentials. However, it
should be remembered that both COMB and ReaxFF are
designed in a suitable form for covalent materials rather than
metallic materials. Even though both potentials are being
applied to metallic systems, how well those potentials perform
is rarely reported for metallic alloy systems or solid-state
multicomponent systems composed of metallic and covalent
elements. On the other hand, the 2NNMEAM, one of the latest
versions of MEAM, has been applied to a wide range of
elements including bcc [66], fcc [67], hcp metals [68,69],
manganese [70], and diamond-structured covalent bonding
elements such as carbon [71], silicon [72], germanium [73],
and their alloys. Details of the 2NNMEAM formalism and its
applications are well summarized in Ref. [74].

The applicable materials classes of atomistic simulations
based on semiempirical interatomic potentials would be
much extended if a potential which has been successful for
multicomponent alloy systems composed of metallic and
covalent elements can also consider the ionic interactions.
From this point of view, it is quite natural to think of the
combination of the 2NNMEAM and the Qeq scheme. Such
an effort has been made during the last several years, and
now, the present authors, the 2NNMEAM potential developers,
report a potential formalism that can cover multicomponent
alloy oxides systems in a form that combines the 2NNMEAM
formalism and the Qeq scheme, as a further improvement of a
series of existing models [33,34,38]. An integrated solution
for the technical problems [34,42,75,76] raised during the
implementation of the Qeq scheme to many-body potentials,
that is, the charge instability, charge for an isolated atom,
and negative charge for metallic elements in alloy systems,
is described in Sec. II, together with the potential formalism.
We apply the potential formalism to the oxides of Ti and Si,
the representative metallic and covalent element, respectively,
and compare its performance with other potentials in Sec. III.
Section IV is the conclusion.

II. FORMALISM OF 2NNMEAM + Qeq POTENTIAL

The formalism of the potential proposed in the present study
contains two terms: nonelectrostatic and electrostatic inter-
action terms. The nonelectrostatic interaction term is exactly
identical to the existing 2NNMEAM potential formalism and is
independent from atomic charges. The electrostatic interaction
term is a function of atomic positions and charges. Therefore,
the total energy of the system including N atoms is expressed
as

ETotal = EMEAM(x) + EES(x,q), (1)

where x = {x1,x2, . . . ,xN} and q = {q1,q2, . . . ,qN} is a vari-
able set of atomic positions and charges, respectively. The
nonelectrostatic and electrostatic terms are independent of
each other. The 2NNMEAM energy of the reference struc-
ture basically satisfies the Rose universal equation of state
(EOS) [19,77] which describes well a universal relationship
between the total energy and interatomic distances in metallic
and covalent solids. It is known that the Rose equation does
not describe well the ionic solids. However, even in the case of

ionic solids, it has been pointed out that the Rose equation is
applied well if the electrostatic interaction term is considered
separately [78,79]. Therefore, in the present formalism, the
2NNMEAM terms based on the Rose EOS is used without
any modification and only the electrostatic term is newly
introduced. Details of the 2NNMEAM formalism will not be
given here. Readers are referred to Refs. [14] and [74].

The electrostatic energy is expressed by the sum of atomic
energy Eatom

i and Coulomb pair interaction V Coul
ij , using the

terminology of Rappe and Goddard [29]:

EES =
N∑
i

Eatom
i (qi) +

N∑
i,j (i �=j )

1

2
V Coul

ij (qi,qj ,Rij ). (2)

A. Atomic energy

Rappe and Goddard [29] expressed the atomic energy of an
atom i as a quadratic polynomial of atomic charge qi ,

Eatom
i (qi) = χ0

i qi + 1
2J 0

i q2
i . (3)

Here, χ0
i is the electronegativity and J 0

i is the atomic
hardness or the self-Coulomb repulsion. It has been pointed
out that this simple quadratic polynomial atomic energy term
does not yield a sufficient amount of penalty energy enough
to prevent atoms from being unreasonably charged beyond the
charge limits. Once the atomic penalty energy fails to keep the
atomic charge within a given limit, the Coulomb interaction
term becomes increasingly high as cationic and anionic atoms
get closer to each other. The electrostatic attractive force
between the two oppositely charged ions becomes stronger
and the distance between the two ions becomes even shorter
as the molecular dynamics time step proceeds, and the atomic
structure of the ionic crystal eventually collapses. To prevent
this charge instability problem, Rappe and Goddard [29] assign
limits to atomic charges and adjust the charge values whenever
any equilibrium charges are calculated to go beyond the limits.
In the Zhou [34] potential and COMB3 [47], the atomic energy
expression is modified as in Eq. (4) and Eq. (5), respectively.

Eatom
i (qi)

= χ0
i qi + 1

2
J 0

i q2
i + ω

(
1 − qi − qmin,i

|qi − qmin,i |
)

(qi − qmin,i)
2

+ω

(
1 − qi − qmax,i

|qi − qmax,i |
)

(qi − qmax,i)
2, (4)

Eatom
i (qi) = χ0

i qi + 1
2J 0

i q2
i + Kiq

3
i + Liq

4
i

+Lbarr
(
qi − q lim

i

)
q4

i . (5)

In the Zhou potential, Eq. (4), two additional terms are
added to the second-order polynomial in order to enforce the
charge bounds within [qmin ,i ,qmax ,i]. The COMB3, Eq. (5),
uses a quartic polynomial with an additional term which is
zero when qi is within its charge limits and is assigned a
rapidly increasing positive value as qi goes beyond its charge
limits.

The use of the modified atomic energy expressions removes
the above-mentioned charge instability problem. However,
such modifications change the numerical procedure for the
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charge equilibration from a linear problem to a nonlinear
problem, which makes the numerical procedure complicated
and inaccurate. In the present study, the atomic energy term
is defined in a way to overcome simultaneously the charge
instability problem and also to keep the minimization problem
linear. While the original Qeq method uses a quadratic function
defined for the overall range of the charge state, in the present
study, the possible charge state is divided into several ranges
and a quadratic polynomial is defined for each range of the
charge state. That is,

E
atom(1)
i (qi) = 1

2J 0
i q2

i + χ0
i qi (0 < |qi | < 1e), (6a)

E
atom(2)
i (qi) = a

(2)
i q2

i + b
(2)
i qi + c

(2)
i (1e < |qi | < 2e),

(6b)

E
atom(3)
i (qi) = a

(3)
i q2

i + b
(3)
i qi + c

(3)
i (2e < |qi | < 3e),

(6c)

E
atom(4)
i (qi) = a

(4)
i q2

i + b
(4)
i qi + c

(4)
i (3e < |qi | < 4e).

(6d)

The functional form of E
atom(1)
i is exactly the same as the

atomic energy term in the original Qeq method, but its domain
of definition is [0,1e]. For |qi | in the range of [1e, 2e], the
atomic energy is defined by another quadratic polynomial,
E

atom(2)
i . This second atomic energy term is set to be smoothly

continuous at |qi | = 1e with the first atomic energy term and to
be larger than the first atomic energy term in the given range,
[1e, 2e]. The third and fourth atomic energy terms can be
defined in the same way. Namely, a quadratic spline function
is used in the present study as the atomic energy term. In order
to determine each quadratic uniquely, one more condition is
required in addition to the continuity and smoothness. The
condition is defined by introducing parameters,

�E
(n)
i = E

atom(n)
i (±n) − E

atom(n−1)
i (±n) (n = 2, 3,4).

(7)

Positive signs are taken for cationic elements and negative
signs for anionic elements. Using �E

(n)
i , the coefficients in

Eqs. (6a)–(6d) can be determined recursively. That is,

a
(n)
i = a

(n−1)
i + �E

(n)
i , (8a)

b
(n)
i = b

(n−1)
i ∓ 2(n − 1)�E

(n)
i , (8b)

c
(n)
i = c

(n−1)
i + (n − 1)2�E

(n)
i , (8c)

where a
(1)
i = 1

2J 0
i , b

(1)
i = χ0

i , c
(1)
i = 0, and n = 2,3,4. By

choosing positive values for �E
(n)
i , the atomic energy for

a higher charge state can be always larger than that for a
lower charge state. The relation between atomic energy and
atomic charge is illustrated in Fig. 1. �E

(n)
i (n = 2,3,4) are

newly introduced potential parameters that prevent the charge
instability and also have an effect on other properties, and
are determined during the parameter optimization procedure
as will be described in Sec. III A. The present approach
requires an additional process to check whether computed
equilibrium charges of individual cationic atoms remain in
the initially assigned charge range. Details of this issue will
also be described in Sec. II C.

FIG. 1. Quadratic spline functions to represent the atomic energy
at different charge intervals.

B. Coulomb interaction and long-range summation

In the original Qeq method [29], Coulomb interactions
between two charged atoms are represented by a Coulomb
integral between atomic densities of ns-Slater orbital. For large
separations, the Coulomb interaction between unit charges on
centers of two atoms separated by a distance R is kc/R exactly
as in the case of two point charges, where kc is the Coulomb
constant. As R → 0, however, the charge distributions on
the two atoms overlap and the Coulomb interaction should
converge to a finite value by a shielding effect. There are a
number of ways of evaluating the shielding of two charge
distributions. This is related to the functional form of atomic
densities or charge distributions. While Rappe and Goddard
choose the ns-Slater orbital as the atomic density function, the
Zhou potential and COMB3 use an atomic density function of
the form

ρ(i)(r; qi) = Ziδ(r) + (qi − Zi)fi(r), (9)

which is first proposed by Streitz and Mintmire [33]. Zi is an
effective core charge and fi the radial distribution function of
the valence charge. The function fi(r) can be expressed by a
simple exponential function (the density function of 1s Slater
orbital):

fi(r) = ζ 3
i

π
exp(−2ζir), (10)

where the parameter ζi controls the spread of the electron dis-
tribution. The Coulomb integral between two atomic densities
can be written

V Coul
ij (qi,qj ,Rij ) = kc

∫∫
ρi(ri,qi)ρj (rj ,qj )

|ri − rj | d3ri d
3rj . (11)

In the present study, the atomic density function of Streitz
and Mintmire, Eq. (9), is used because of its mathematical
simplicity. The analytic solution of double integral in Eq. (11)
is as derived by Zhou et al. [34].

As mentioned already, for large separations, the Coulomb
interaction converges to kc/R, which is a long-range interac-
tion. Classically, this long-range interaction can be evaluated
using the well-known Ewald summation technique [80] which
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has been used in the original Qeq and Zhou potentials. The
Ewald summation technique accurately computes long-range
interactions. However, the computational cost is expensive due
to the Fourier transform involved in the summation procedure.
The COMB3 uses the charge-neutralized real-space direct
summation method [81] (Wolf’s direct summation method
hereafter), which computes the long-range Coulomb potential
without using the Fourier transform. The computational cost
of Wolf’s direct summation method is relatively low because
the Fourier transform is not necessary. However, this method
involves a probable computational error. According to Wolf
et al. [81], the calculation for a perfect crystal can be evaluated
almost accurately in comparison with Ewald summation. They
report that even in the case of highly disordered systems,
the amount of error is negligible. In molecular dynamic
simulations, a highly efficient calculation with an acceptable
amount of error is preferable to an exact calculation with an
expensive computational cost. Therefore, the Wolf’s direct
summation [81] is used in the present study instead of the
Ewald summation.

The double integral for Coulomb integration in Eq. (11)
involves one long-range 1/R term, and the other exponential
terms included are of short range. The short-range exponential
terms effectively decay at relatively short distances, and
therefore, can be directly summed up. The lattice summation
of 1/R term is replaced by

1

2

N∑
i,j (i �=j )

kc

qiqj

Rij

≈ 1

2

N∑
i,j (i �=j )

kcqiqj

(
erfc(αRij )

Rij

−erfc(αRc)

Rc

)

−
N∑
i

kcq
2
i

(
erfc(αRc)

2Rc

+ α√
π

)
(12)

in the Wolf’s direct summation method. Here, α is the damping
coefficient and Rc is the cutoff radius. As α increases, the
Coulomb potential converges at shorter cutoff radius but the
error increases, and vice versa. Therefore, it is necessary
to determine an optimized value of α and Rc considering
computational accuracy and efficiency. By several tests,

α = 0.2 Å
−1

and Rc = 12 Å are finally selected in this study.

C. Minimization method

The analytic form of the total electrostatic energy, Eq. (2),
is now clearly defined as a function of atomic positions and
charges. For any form of quadratic function of qi’s, one can
generalize the total electrostatic energy as

EES
total =

N∑
i

qiχi + 1

2

N∑
i,j

qiqjJij , (13)

where χi and Jij are coefficients independent of qi . In this
study, χi and Jij can be written

χi = b
(n)
i +

N∑
j �=i

kcZj ([j |fi] − [fi |fj ]), (14)

Jij = 2

[
a

(n)
i − kc

(
erfc(αRc)

2Rc

+ α√
π

)]
, i = j, (15a)

Jij = kc

[
[fi |fj ] − 1

Rij

+ erfc(αRij )

Rij

− erfc(αRc)

Rc

]
,

i �= j, (15b)

where [j |fi] and [fi |fj ] are Coulomb integrals [34] of
two atomic densities. According to the Qeq method, the
equilibrium charges can be computed by minimizing total
electrostatic energy, Eq. (13), under the condition of charge
conservation. This is algebraically equivalent to the elec-
tronegativity equalization saying that the chemical potentials
of each atom, μi ≡ ∂EES

∂qi
, be equal to each other: μ1 = μ2 =

· · · = μN . Therefore, the Qeq method leaves N independent
equations including the charge conservation condition (usually
C = 0 with the charge neutrality condition):

N∑
i

qi = C. (16)

The chemical potentials, the first-order partial derivatives
of EES with respect to qi , are linear functions when the
atomic energy term is quadratic. Therefore, the equations for
the electronegativity equalization and the charge neutrality
condition construct a linear equation system of N dimension.
Rappe and Goddard solve this equation analytically by an
inverse matrix method. This method can find an exact solution
but can be highly inefficient for systems of large N . Moreover,
the coefficient matrix is not symmetric and inverting the
matrix can be further inefficient. On the other hand, the Zhou
potential uses a conjugate gradient method (CGM) which
finds a numerical solution of the minimization problem by
an iterative algorithm.

The CGM can be more efficient than the matrix method for a
large N. However, it can only be used to solve “unconstrained”
optimization problems. Therefore, the equation system should
be modified to an unconstrained form to be solved using the
CGM method. In the case of the Zhou potential, the constraint
(charge neutrality condition) is absorbed into the equations
by substituting −∑N−1

i=1 qi for qN in Eq. (13), modifying
the problem into the one with N − 1 independent variables
qi(i = 1, . . . ,N − 1). Here, qN is determined after finding the
values of all the other equilibrium charges, using the relation
qN = −∑N−1

i=1 qi . However, we find that this approach can
leave an unreasonable value to qN because all numerical
errors involved in the calculated qi(i = 1, . . . ,N − 1) are
accumulated to qN . We also confirm during our study that
the qN can be significantly different from those for other
atoms even in a perfectly ordered structure such as the
NaCl structure which should satisfy qNa(1) = qNa(2) = · · · =
qNa(N/2) = −qCl(1) = −qCl(2) = · · · = −qCl(N/2).

In COMB3, on the other hand, a dynamic fluctuating
charge method proposed by Rick et al. [82] is used for
minimizing electrostatic energy. In this approach, the charges
are treated as dynamical variables that can evolve explicitly
in time. The individual charges respond to deviations from
the electronegativity equalization by moving toward a new
charge state, which more closely satisfies the equalization
condition. It can be said that this method of updating the
charges is equivalent to a single-iteration steepest descent
root-finding scheme [83]. Because this method does not
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construct any matrix, it is computationally more efficient than
the above-mentioned matrix-based methods. However, this
method cannot assure the electronegativity equalization and
the charge neutrality conditions, which means that the energy
may not be conserved during the simulation [41,83].

Our study uses a split-charge equilibration (SQE) method
proposed by Nistor et al. [75], which intrinsically allows the
charge neutrality condition, and we use the CGM to minimize
the total electrostatic energy without any constraint condition.
The SQE is based on the principle of Qeq, but is different from
the original Qeq in the way of representing atomic charges.
This will be explained in more detail in Sec. II D and in the
Appendix.

As mentioned in Sec. II A, the atomic energy term used
in the present study has different expression depending on
the range of qi . Therefore, the coefficients in Eq. (13) should
match atomic charges. For a given initial configuration where
equilibrium charge values are not assigned to individual atoms,
the atomic energy of all atoms can be given as E

atom(1)
i assum-

ing a charge range of [−1e,1e]. When equilibrium charges
for all atoms are computed through the energy minimization
process, some atoms may have charge values beyond the initial
range. The atomic energy values of those atoms are modified
according to the newly computed charge. The subsequent
energy minimization using the modified atomic energies may
yield new values of equilibrium charges. These minimization
processes should be repeated until all the equilibrium charges
are in the correct domain of atomic energy. Fortunately,
these processes are normally over up to three times and are
required only for the initial step where the information on
equilibrium charges is not available. Once equilibrium charges
are assigned to individual atoms, atomic energy terms for the
next step can be directly chosen from the previous ones. The
equilibrium charges may change as atomic positions change.
However, in ordinary molecular dynamics simulations, the
atomic positions of individual atoms do not change abruptly
and neither do the equilibrium charges. Therefore, the multiple
energy minimization process is not required frequently during
a molecular dynamics step except the first time step.

D. Charge representation

In the original Qeq, the individual atomic charges are
represented by a set of qi and they are considered as variables
to be determined as a solution of an energy minimization
problem. In this case, some problematic situations can occur
as follows: For example, let us consider an isolated atom from
a bulk. If one performs the Qeq with the given configuration,
the isolated atom will get some charges even though it must
be neutral due to the absence of neighboring atoms to transfer
charges around. A similar situation can occur in a simulation
containing two different metallic elements. In binary metallic
alloys, two metallic atoms would not transfer charges to each
other. However, in Qeq simulations, some charges would be
given to one type of atoms from the other type of atoms as
far as they have different electronegativity. These undesirable
situations can be avoided if the atomic charges are generated
only when there are neighbor atoms that can accept or
donate electrons. Indeed, an ionic bond is formed when the

valence electron density between covalently bonded atoms is
concentrated on the side of a more electronegative atom.

As a means to describe the formation of ionic bonding more
plausibly, Nistor et al. [75] propose a new scheme that allows
the charge flow only between covalently bonded neighbors,
using the concept of the so-called split charges. They express
the charge qi of an atom i as

qi =
Rij <Rbond

ij∑
j

q̄j i , (17)

where the split charge q̄j i represents the charge flow from
a covalently bonded neighbor atom j to atom i. Rbond

ij is
the cutoff distance for defining the split charge, which is
sufficiently large so that all first-neighboring atoms with
opposite charges are covered. The opposite direction of charge
flow is represented by the opposite sign of the split charge:

q̄ij = −q̄j i . (18)

With this approach, an isolated atom remains neutral
because there is no neighbor atom to transfer a charge to. If we
do not define the split charge between metallic elements, no
electrostatic interaction exists in purely metallic alloy systems
and the systems can be described only by the nonelectrostatic
term (2NNMEAM formalism, in the present case). In addition,
this representation of the atomic charge always ensures charge
neutrality of the whole system because the opposite direction
of a split charge has a negative sign. Therefore, the CGM
can be applied more straightforwardly and stably. That means
that the minimization problem has a symmetric matrix and
the numerical errors are not accumulated to the last q variable
with no external condition. More details and some comments
in using the split-charge model are described in the Appendix.

In Table I, we summarize our formalisms and techniques
used for the electrostatic energy term in comparison with the
original Qeq, the Zhou potential, and the COMB3. We also
present the computing procedure of the electrostatic energy
in the form of a flowchart in Fig. 2. The electrostatic energy
is calculated at every time step. However, the electrostatic
energy minimization (charge equilibration) is not performed
every time step but every tens or hundreds time step, since it
is a time-consuming process.

III. EVALUATION OF 2NNMEAM + Qeq FOR Ti-O
AND Si-O SYSTEMS

The primary goal of our study is to develop a potential
model that can simultaneously describe metallic, covalent,
and ionic bonding. To demonstrate the validity of our po-
tential model, we choose the Ti-O and Si-O systems as
the representative oxide system of the metallic and covalent
elements, respectively, and optimize the potential parameters
for each system. We calculate fundamental physical properties
(structural, elastic, thermodynamic, and defect properties)
of various compounds and compare them with available
experimental data or other calculations. We also examine the
thermal stability of all the compounds considered and describe
them in this section.
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TABLE I. Summary of formalisms and techniques used for the electrostatic energy term in various potential models.

2NNMEAM + Qeq Original Qeq [29] Zhou potential [34] COMB3 [47]

Atomic energy Quadratic spline Quadratic Quadratic with Quartic with
additional terms additional terms

Atomic density function 1s Slater orbital with ns-Slater orbital 1s Slater orbital with 1s Slater orbital with
in Coulomb integral effective core charge effective core charge effective core charge

Long-range summation Wolf’s direct Ewald Ewald Wolf’s direct
Energy minimization subject to Solving M (the no. of bonds) Solving N (the no. of atoms) Solving N − 1 linear equation Dynamic fluctuating charge

neutrality constraint linear equation of linear equation of by substituting method (extended-
Lagrangian approach)

qi = ∑
j q̄j i μ1 = μ2 = · · · = μN qN = − ∑N−1

i=1 qi

using linear CGM based on
∑N

i=1 qi = 0 with inverse using nonlinear CGM
split-charge equilibration matrix method

A. Parameter optimization

Our potential model, the 2NNMEAM + Qeq, has 14
MEAM parameters (Ec, Re, α, A, t (1), t (2), t (3), β(0), β(1), β(2),
β(3), Cmin, Cmax, and d) and seven electrostatic parameters
(χ0, J 0, �E(2), �E(3), �E(4), ζ and Z) for each element. The
electrostatic part of our model affects only binary properties
(for titanium oxides or silicon oxides), not unary properties.
This means that our 2NNMEAM + Qeq potential is equivalent
to the existing 2NNMEAM potential for pure elements, and
independently determined 2NNMEAM parameter sets for pure
elements can be used for developing binary potentials. In this
study, we use previously developed 2NNMEAM potential
parameters without any modification for pure titanium [68]
and silicon [72]. However, some (thermal stability) problems
occur when describing the Ti-O and Si-O systems using the
present pure titanium [68], silicon [72] parameters and the
existing oxygen parameters [13]. The oxygen parameters are
those determined by fitting a relatively insufficient amount

FIG. 2. The computing procedure of the electrostatic energy in
the present potential formalism.

of experimental information, the properties of O2 dimer and
O3 trimer, while they strongly affect properties of the Ti-O
and Si-O binary systems. Therefore, we modified the MEAM
parameters for pure oxygen to better describe the Ti-O and
Si-O binary systems by fitting the binary properties and also
the properties of pure oxygen, simultaneously. The modified
oxygen MEAM parameters are listed in Table II, together with
parameters for pure titanium [68] and silicon [72].

The electrostatic parameters defining the atomic energy,
�E(3) and �E(4), are not significant in the present case because
the formal charge of oxygen (−2e) is the upper limit of the
oxygen charge, and oxide properties are well described with
equilibrium charge values smaller than 2e for Ti and Si atoms.
Nevertheless, at high-pressure or high temperature conditions,
the charge values can go beyond the range [−2e,2e] and cause
a charge instability problem unless �E(3) is given a sufficiently
large value. In the present study, �E(3) is given an arbitrarily
large value so that the charge of oxygen cannot be more
negative than −2e. The effective core charge, Z, for oxygen is
set to zero as has been done by Streitz and Mintmire [33] and
Zhou et al. [34], and therefore, five parameters for titanium or
silicon and four parameters for oxygen are optimized, as listed
in Table II.

To describe the interaction between two different elements
(i and j ), the 2NNMEAM potential needs 13 more parameters,
�Ec, Re, α, d, Cmin(ij i), Cmin(jij ), Cmin(iij ), Cmin(ijj ), Cmax(ij i),
Cmax(jij ), Cmax(iij ), Cmax(ijj ), and ρ0(i)/ρ0(j ). In the present
study, only Cmin(OiO) and Cmax(OiO) parameters are given an
adjusted value and other Cmin and Cmax parameters are given
default assumed values, i.e., Cmin(iOi) = Cmin(i), Cmin(iiO) =
Cmin(iOO) = [0.5C

1/2
min(i) + 0.5C

1/2
min(O)]

2 and Cmax = 2.80, in
each binary system.

If all the unary 2NNMEAM parameter sets are available for
constituent elements, the parametrization for a binary oxide
system is performed over electrostatic parameters for pure
elements and 2NNMEAM parameters for the binary system.
In the present study, 2NNMEAM parameters for pure oxygen
are also included in the parameter optimization procedure, as
mentioned already. Among several candidate parameter sets
for pure oxygen, a common parameter set that shows the best
performance in both Si-O and Ti-O binary systems is finally
selected. Since the electrostatic and 2NNMEAM parameter
sets for pure oxygen are now available, the parametrization
on other metal-oxide binary systems shall be performed
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TABLE II. 2NNMEAM + Qeq parameters for pure Ti, Si, and
O. 2NNMEAM parameters (Ec, Re, α, A, t (1)−(3), β (0)−(3), Cmin, Cmax,
and d) for pure Ti [68] and Si [72] are as published in literature and
MEAM parameters for pure O and electrostatic parameters (χ0, J 0,
�E(2)−(4), ζ , and Z) are optimized in the present study.

Ti Si O
Reference structure hcp Diamond Dimer

Ec (eV) 4.87 4.63 2.56
Re (Å) 2.92 2.35 1.21
α 4.7195 4.9036 6.8800
A 0.66 0.58 1.44
t (1) 6.80 1.80 0.10
t (2) − 2.00 5.25 0.11
t (3) − 12.00 − 2.61 0.00
β (0) 2.70 3.55 5.47
β (1) 1.00 2.50 5.30
β (2) 3.00 0.00 5.18
β (3) 1.00 7.50 5.57
Cmin 1.00 1.41 2.00
Cmax 1.44 2.80 2.80
D 0.00 0.00 0.00
χ 0 (eV/e) − 1.192 − 3.17 10.11
J 0 (eV/e2) 8.436 10.64 20.5
�E(2) (eV) 7.97 6.14 5.63
�E(3) (eV) 105a 105a 105a

�E(4) (eV)

ζ (Å
−1

) 0.83 0.48 2.39
Z (e) 1.408 0.44 0.00

aAn arbitrary large value.

over the electrostatic parameters for the metal elements and
2NNMEAM parameters for the relevant binary systems.

Tables II and III show the finally selected potential param-
eters obtained by fitting physical properties (structural, elastic
properties and heat of formation) of various compounds from
experiments or DFT calculations, using a genetic algorithm
which is a well-known global optimization method. The cutoff

TABLE III. 2NNMEAM parameters for the Ti-O and Si-O binary
systems. i and j indicate cationic elements (Ti or Si) and oxygen,
respectively.

Ti-O Si-O
Reference structure B1 (NaCl) B3 (ZnS)

�Ec (eV) 1.5280 1.6400
Re (Å) 2.0649 1.7043
α 7.4455 8.1433
d 0.01 0.03
Cmin(ij i) 1.00 1.41
Cmin(jij ) 0.97 0.29
Cmin(iij ) 1.46 1.69
Cmin(ijj ) 1.46 1.69
Cmax(ij i) 2.80 2.80
Cmax(jij ) 2.51 1.27
Cmax(iij ) 2.80 2.80
Cmax(ijj ) 2.80 2.80
ρ0(O)/ρ0(Ti or Si) 12.0 4.29

distance used in the 2NNMEAM calculations is 4.8 Å for
both Ti-O and Si-O systems. The cutoff distance for the split
charge, Rbond

ij in Eq. (17), is given a value of 2.5 Å for the Ti-O

and 2.0 Å for the Si-O system, respectively, considering that
the metal-oxygen distances in TiO2 and SiO2 polymorphs are
around 2.0 and 1.6 Å, respectively.

Before presenting the calculated properties of the Ti-O
and Si-O binary systems, we present the calculated properties
of pure oxygen using the modified potential parameter set
listed in Table II. The MEAM potential formalism exactly
reproduces the cohesive energy (Ec) and nearest distance (Re)
of the given reference structure, and there is no doubt in that
the present oxygen parameters would reproduce correctly the
cohesive energy and interatomic distance of the O2 dimer. In
the case of the O3 trimer, our potential gives −2.096 eV/atom,
1.271 Å, and 116.65° for the cohesive energy, bond length, and
bond angle, respectively. This calculation is comparable with
the known literature value [84] of 1.28 Å for the bond length
and 116.8° for the bond angle in the O3 trimer. We also check
whether our potential predicts any wrong stable phase other
than O2 dimer, by computing the cohesive energy of some
artificial structures of pure oxygen such as simple cubic, fcc,
bcc, hcp, and diamond structure. Those structures, except the
diamond structure, are calculated to be unstable even at 0 K,
while the diamond structure of pure oxygen is calculated to
be metastable with a cohesive energy of −0.177 eV/atom and
a nearest-neighbor distance of 1.617 Å. We finally perform
a molecular dynamic simulation with a sample consisting of
randomly distributed oxygen atoms to check whether some
other oxygen molecules can be stabilized in addition to O2

dimer and O3 trimer. The molecular dynamic simulation is
performed at 300 K with an N -P -T ensemble for 1 ns using a
sample of 1000 atoms. We confirm that the initially liquidlike
phase changes into a gaseous phase consisting mainly of O2

dimers and some of O and O3 molecules with an average
potential energy slightly above −2.56 eV/atom, the ground
state energy of the O2 dimer. Based on the above-mentioned
results, the present authors believe that the present MEAM
potential for pure O describes reasonably well the properties
of pure oxygen.

B. Properties of titanium oxides by the
2NNMEAM + Qeq potential

Titanium oxides have been studied with great interest
industrially and academically due to their various compounds
and polymorphs. Titanium dioxide (TiO2) exists abundantly in
nature as minerals such as rutile [85,86], anatase [87,88], and
brookite [89,90]. In addition, metastable phases (TiO2(B) [91],
hollandite [92], ramsdellite [93]) can be synthesized experi-
mentally. It has also been indicated from experimental and
theoretical studies that there are high-pressure phases of TiO2

such as columbite [94,95], baddeleyite [95,96], cotunnite [97],
etc. In addition to the TiO2, various compounds of titanium
oxide with different stoichiometry have been reported: Mag-
neli phases (TinO2n−1) [98,99], Ti3O5 [100,101], Ti2O3 [102],
TiO [103,104], and so on.

An ideal interatomic potential would be the one that
reproduces the structural, mechanical, and thermodynamic
properties (lattice parameters, elastic constants, and heat of
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TABLE IV. Lattice parameters and bulk modulus of TiO2 polymorphs according to the present potential, in comparison with experimental
data, DFT calculation, and other calculations: MS-Q, ReaxFF, and COMB3. The relative root mean squared error (rRMSE, %) of calculated
lattice parameters (LP) and bulk modulus (B) with respect to available experimental data is presented in the last two rows.

2NNMEAM + Qeq Expt. DFT [105] MS-Q [32] ReaxFF [65] COMB3 [49]

Rutile a (Å) 4.5761 4.5937 [85] 4.652 4.5866 4.656 4.562
c (Å) 2.9916 2.9587 [85] 2.970 2.9581 2.998 2.967

B (GPa) 235 212 [86] 212a 229 266
Anatase a (Å) 3.8460 3.7848 [87] 3.809 3.8499 3.801 3.849

c (Å) 9.3218 9.5214 [87] 9.732 9.0633 9.550 9.135
B (GPa) 179 178 [88] 187a 176 234

Brookite a (Å) 9.3607 9.174 [89] 9.281 9.1128 9.252 9.368
b (Å) 5.4344 5.449 [89] 5.516 5.4497 5.487 5.424
c (Å) 5.1441 5.149 [89] 5.185 5.1703 5.183 5.046

B (GPa) 233 255 [90] 188a 211 261
TiO2(B) a (Å) 12.3952 12.163 [91] 12.297 12.1502

b (Å) 3.8281 3.735 [91] 3.764 3.8285
c (Å) 6.5294 6.513 [91] 6.611 6.4309
β (°) 107.694 107.29 [91] 106.94 107.61

B (GPa) 167 182a 184
Hollandite a (Å) 10.2415 10.182 [92] 9.9633

c (Å) 3.0361 2.966 [92] 2.9572
B (GPa) 98 118

Ramsdellite a (Å) 5.1098 4.9022 [93] 4.968 4.7210
b (Å) 9.3533 9.4590 [93] 9.554 9.4163
c (Å) 3.0295 2.9585 [93] 2.981 2.9599

B (GPa) 129 115a 138
Columbite a (Å) 4.6789 4.5318 [94] 4.585 4.5064 4.608

b (Å) 5.3631 5.5019 [94] 5.581 5.5015 5.574
c (Å) 4.9745 4.9063 [94] 4.935 4.9651 4.978

B (GPa) 197 258 [95] 204a 218
Baddeleyite a (Å) 4.8032 4.64 [96] 4.855 4.7231 4.590

b (Å) 4.8230 4.76 [96] 4.914 4.7440 4.892
c (Å) 4.9935 4.81 [96] 5.093 4.7460 4.835
β (°) 101.124 99.2 [96] 100.12 101.02 99.20

B (GPa) 238 290 [95] 149a 220
Cotunnite a (Å) 5.3188 5.163 [97] 5.1052 5.335

b (Å) 2.7781 2.989 [97] 2.9717 3.088
c (Å) 6.8323 5.966 [97] 9.0836 6.165

B (GPa) 275 431 [97] 92
rRMSE of LP (%) 3.8 2.1 10.4 1.8 2.0
rRMSE of B (%) 19.9 26.5 35.1 23.4

aDFT values for bulk moduli are obtained in the present work by using VASP files provided in Ref. [105].

formation) of all the above-mentioned oxide phases using
one set of potential parameters. We optimize the potential
parameters for the Ti-O system in Tables II and III by fitting
the physical properties of TixOy oxides. In this section,
we compare the calculated properties of TixOy oxides with
available experimental or other calculations to evaluate the
quality of fitting. The defect and high-pressure properties
of some TiO2 oxides are also calculated and are compared
with available information to evaluate the transferability of
the potential.

Table IV compares lattice parameters and bulk modulus of
various titanium dioxide (TiO2) polymorphs calculated using
the present 2NNMEAM + Qeq potential, with experimental
data [85–97], DFT calculation [105], and those by three
other interatomic potentials: MS-Q potential [32], reactive

force field (ReaxFF) [65], and COMB3 [49]. The agreement
between our calculation and experimental data is good for
all polymorphs of TiO2. The relative root mean square error
(rRMSE) of our potential with respect to experimental data for
lattice parameters is 3.8%. The error mostly comes from the
lattice parameter c of cotunnite. It should be also noted that
our potential covers a much wider range of polymorphs than
the other many-body + Qeq potentials, ReaxFF and COMB3.

The elastic constants of rutile are also available. Our calcu-
lation is compared with experimental data [86], DFT [105], and
other calculations [32,49] in Table V. The agreement between
the present calculation and experiments or the DFT calculation
is also reasonably good.

Lattice parameters and bulk modulus of various TixOy

compounds (compositions other than x:y = 1 : 2) are
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TABLE V. Elastic constants (GPa) of TiO2 rutile according to the present 2NNMEAM + Qeq potential, in comparison with experimental
data, DFT calculation, and other calculations: MS-Q, ReaxFF, and COMB3.

2NNMEAM + Qeq Expt. [86] DFTa MS-Q [32] ReaxFF [49] COMB3 [49]

C11 291 268 276 294 389 318
C33 447 484 469 423 484 516
C12 202 175 166 202 208 257
C13 170 147 147 168 151 182
C44 103 124 140 96 147 123
C66 204 190 212 190 201 204
rRMSE (%) 12.6 7.6 14.2 21.5 23.1

aDFT values for bulk modulus are obtained in the present work by using the VASP files provided in Ref. [105].

TABLE VI. Lattice parameters and bulk modulus of TixOy compounds according to the present potential, in comparison with experimental
data and MS-Q calculations.

2NNMEAM + Qeq Expt. DFT [105] MS-Q [31]

Ti6O11 a (Å) 7.4679 7.517 [98] 7.436
b (Å) 11.8159 11.986 [98] 11.82
c (Å) 13.4827 13.397 [98] 13.30
α (°) 98.830 98.29 [98] 98.26
β (°) 106.415 105.52 [98] 105.8
γ (°) 106.689 107.79 [98] 107.8

B (GPa) 215 223
Ti4O7 a (Å) 5.5312 5.600 [99] 5.518

b (Å) 7.0642 7.133 [99] 6.985
c (Å) 12.3859 12.466 [99] 12.23
α (°) 94.576 95.05 [99] 95.52
β (°) 93.589 95.17 [99] 94.63
γ (°) 109.113 108.71 [99] 108.4

B (GPa) 211 228
Ti3O5(L) a (Å) 9.7390 9.7568 [100] 9.810 9.433

b (Å) 3.8276 3.8008 [100] 3.870 3.825
c (Å) 9.1272 9.4389 [100] 9.346 9.567
β (°) 92.262 91.547 [100] 91.15 90.26

B (GPa) 225 180a 131
Ti3O5(H ) a (Å) 9.6789 9.8261 [100] 9.878 9.451

b (Å) 3.7928 3.7894 [100] 3.803 3.782
c (Å) 9.6165 9.9694 [100] 10.001 9.577
β (°) 90.000 91.258 [100] 91.27 90.21

B (GPa) 198 175a 226
γ -Ti3O5 a (Å) 9.8140 9.9701 [101] 10.218 10.26

b (Å) 5.1296 5.0747 [101] 5.069 5.080
c (Å) 7.0498 7.1810 [101] 7.250 6.872
β (°) 111.974 109.865 [101] 112.04 108.3

B (GPa) 204 177a 43
Ti2O3 a (Å) 5.1416 5.158 [102] 5.112 4.928

c (Å) 12.6430 13.611 [102] 14.012 13.41
B (GPa) 227 214a 284

α-TiO a (Å) 7.8834 9.340 [103] 9.337
b (Å) 3.8995 4.142 [103] 4.173
c (Å) 6.5168 5.855 [103] 5.844
β (°) 107.77 107.53 [103] 107.32

B (GPa) 283 196a

γ -TiO a (Å) 3.9960 4.179 [104] 4.289 4.043
B (GPa) 648 210 [104] 224a 333

rRMSE of LP (%) 4.1 1.3 2.1

aDFT values for bulk moduli are obtained in the present work by using the VASP files provided in Ref. [105].
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FIG. 3. Enthalpy of formation of titanium oxides according to
the present 2NNMEAM + Qeq potential, in comparison with a
CALPHAD calculation [106]. The reference state is hcp Ti and O2

gas.

calculated and compared with experimental data [98–104],
DFT calculation [105], and MS-Q [31] calculation (see
Table VI). Here, it should be noticed that the TixOy compound
phases listed in Table VI are not covered by ReaxFF [65] and
COMB3 [49], and the present potential describes most of those
compounds (except α-TiO and γ -TiO) even better than the
MS-Q. The γ -TiO phase is known to involve vacancies [104].
However, we considered a perfect NaCl type for the γ -TiO.
The agreement between our calculation and experiment data
for the α-TiO and γ -TiO phases is relatively worse than that
for other compound phases.

The next property examined is the thermodynamic proper-
ties of individual compounds. Figure 3 shows the calculated
enthalpy of formation of the most stable oxide phase at
each stoichiometric composition and at 0 K, in comparison
with a CALPHAD calculation [106]. The upward curvature
in the composition vs enthalpy of formation plot indicates
that Ti2O3, Ti3O5, and TiO2 are thermodynamically stable
compounds, while α-TiO and γ -TiO are slightly metastable.
It should be noted here that the rutile is calculated to be the
most stable TiO2 compound in agreement with experimental
information [107]. However, the low temperature Ti3O5(L)
phase is calculated to be less stable than the high temperature

Ti3O5(H ) phase at 0 K, according to the present potential.
Actually, at the composition of Ti3O5, there are two stable
phases, the low (L) and high (H ) temperature Ti3O5, and a
metastable γ phase. The phase stability of Ti3O5 polymorphs is
L > γ > H by a DFT calculation [105], while γ > H > L by
the present potential. The energy difference between γ -Ti3O5
and Ti3O5(L) is not significant (about 0.039 eV/atom). Further,
it should also be noted that at the composition of TiO the
monoclinic α-TiO is the experimentally known [103], most
stable phase at low temperatures up to 1200 K and the NaCl-
type γ -TiO exists with a complicated vacancy ordering at
high temperatures. However, our potential predicts α-TiO and
γ -TiO as mechanically unstable phases, as will be described
in more detail later on. Dilute heat of solution of oxygen in
hcp and bcc Ti is −2.37 and −1.79 eV, respectively, while
CALPHAD calculation [106] gives −5.65 and −5.57 eV for
the same quantities. These shortcomings should be kept in
mind in future applications of the present potential.

As already mentioned, rutile is the most stable phase of
TiO2. The cohesive energy of rutile and energy differences
between rutile and other polymorphs, calculated by the
present potential, are listed in Table VII, also in comparison
with experimental data [107], the DFT calculation [105],
and other calculations [49]. The cohesive energy of rutile
according to our potential is −19.0317 eV/TiO2, while it
is −19.554 eV/TiO2 according to the CALPHAD calcula-
tion [106]. Both are in good agreement with experimental
value −19.9 eV/TiO2. The DFT overestimates and the MS-Q
underestimates the cohesive energy of rutile, while the ReaxFF
and COMB3 yield comparable values. The energy differences
between rutile and anatase or brookite according to the present
potential are comparable with experimental information or
other calculations.

As a means to examine the transferability of the potential,
surface energy of rutile and anatase, and point defect (Schottky
and Frenkel defects) formation energy of rutile are calculated
and compared with first-principles data [108–112], as illus-
trated in Tables VIII and IX, respectively. Here, all calculations
are for relaxed structures. In the case of (100) and (110) surface
of rutile, there are two possible terminations (Ti terminated
and O terminated). The representative, O-terminated surface
is considered in the present calculation. Other surfaces are
uniquely defined. For the point defects, two types of relative
position of defects are considered, where point defects (Ti

TABLE VII. Cohesive energy of rutile and energy differences between rutile and other TiO2 polymorphs, calculated using the present
2NNMEAM + Qeq potential, in comparison with experimental data, DFT calculations, and other calculations: MS-Q, ReaxFF, and COMB3.

�Erutile→phase (eV/TiO2)

Phase 2NNMEAM + Qeq Expt. [107] DFT [105] MS-Q [49] ReaxFF [49] COMB3 [49]

Rutile − 19.0317 − 19.900 − 26.810 − 8.248 − 21.225 − 19.189
Anatase +0.0458 +0.035 − 0.093 +0.057 +0.034 +0.129
brookite +0.0300 +0.008 − 0.051 +0.037 +0.144 +0.080
TiO2(B) +0.1585 − 0.111
Hollandite +0.0973 +0.386 +0.275
Ramsdellite +0.1404 +0.066 +0.130 +0.263
Columbite +0.0537 − 0.018 +0.074 +0.010
Baddeleyite +0.1456 +0.084 +0.515 +0.667
Cotunnite +0.6297 +0.553 +0.739
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TABLE VIII. Calculated surface energy (J/m2) of rutile and anatase, in comparison with first-principles data [108–110]. There are two
possible terminations (Ti terminated and O terminated) for (100) and (110) surfaces of rutile. The representative surface (and thus considered
here) is the O terminated. Other surfaces are uniquely defined.

Surface 2NNMEAM + Qeq DFT

Rutile (001) 1.18 1.36 [108], 1.68 [109]
(100) 0.93 0.68 [108], 1.04 [109]
(110) 0.61 0.48 [108], 0.86 [109], 0.31 [110], 0.84 [110]

Anatase (001) 0.63 0.90 [110], 1.38 [110]
(100) 0.75 0.53 [110], 0.96 [110]
(101) 0.61 0.44 [110], 0.84 [110]

vacancy and two O vacancies for Schottky, Ti vacancy and
Ti interstitial for cation Frenkel, and O vacancy and O
interstitial for anion Frenkel) are neighboring or distanced and
noninteracting. It is shown that our calculation is comparable
with available first-principles data for both the surface energy
and defect formation energy.

We also investigate the structural changes (lattice parameter
a and c, and volume) of rutile and anatase at high pressures
and compare them with experimental information [113,114]
in Fig. 4. It is clear that our potential describes well the
high-pressure properties even though those properties are not
included in the fitting procedure.

The last quantity investigated for the Ti-O system is the
charge state of each element in individual compound phases.
The charge equilibration scheme enables the computation of
variable charges depending on local environments, and the
average charge of titanium and oxygen atoms in individual
titanium oxide phases is different as listed in Table X.
According to our potential, the average charge of Ti in the
three TiO2 polymorphs—rutile, anatase, and brookite—is
+1.408e,+1.409e, and +1.408e, respectively, while a DFT
calculation [49] gives +2.26e and +2.24e for rutile and
anatase, respectively. COMB3 [49] gives +1.91e, +1.88e, and
+1.89e for rutile, anatase, and brookite, respectively, while
other potentials have smaller values (ReaxFF [49]: +1.60e,
+1.58e, and +1.58e; MS-Q [32]: +1.15e, +1.12e, and 1.14e).
It should be emphasized here that it is difficult to obtain
information about the charge state of individual atoms in solids
by experiments, and the charge is not a well-defined quantity

TABLE IX. Calculated Schottky (S), cation Frenkel (CF), and
anion Frenkel (AF) formation energy (eV) of rutile, in comparison
with first-principles data [111,112]. Two types of relative position
of point defects are considered, where point defects (Ti vacancy and
two O vacancies for Schottky, Ti vacancy and Ti interstitial for cation
Frenkel, and O vacancy and O interstitial for anion Frenkel) are
neighboring or distanced and noninteracting.

Defect 2NNMEAM + Qeq DFT

SNeighboring 3.62 3.01 [111]
SNoninteracting 5.97 5.47 [111], 4.03–6.55 [112]
CFNeighboring 4.87 1.98 [111]
CFNoninteracting 6.63 3.84 [111], 3.07–5.46 [112]
AFNeighboring 2.54
AFNoninteracting 4.00

even in DFT calculations. The average charge of Ti in other
compound phases is calculated to decrease with a decreasing
O/Ti ratio, as can be well expected.

C. Properties of silicon dioxides by the
2NNMEAM + Qeq potential

Different from the Ti-O binary system, the Si-O system
has only one compound, the silicon dioxide (SiO2), on the
phase diagram. However, the SiO2 is characterized by the
existence of a large number of polymorphs. Among the
polymorphs, quartz (α- [115] and β- [116]), β-tridymite [117],
and cristoballite (α- [118] and β- [119]) appear as thermo-
dynamically stable phases at different temperature ranges.
Coesite [120] is a high-pressure polymorph of SiO2 with a
rather complex monoclinic structure. Keatite [121] is found
in nature, although rarely, and is mainly synthesized by
crystallization at moderate temperature (473–673 K) and
pressure (2–3 kbar). Stishovite [122] (an isomorph with rutile
TiO2) is also synthesized at high-pressure conditions. The issue
here is to reproduce the fundamental physical properties of
all the above-mentioned SiO2 polymorphs using one set of
potential parameters, as has been done for the Ti-O system.

The structure of α-quartz may be considered as a distorted
form of the idealized structure of β-quartz, and the β-
cristobalite and β-tridymite structures can be idealized by
choosing some structural parameters to be more symmetric
(idealized β-cristobalite and β-tridymite are represented with
a prefix “i-”: i-cristobalite and i-tridymite, respectively). Our
potential can reasonably reproduce these minimal structural
differences in low symmetric and idealized structures. Table XI
shows the calculated lattice parameters and bulk modulus
of SiO2 polymorphs, in comparison with experimental data
[115–122], DFT calculations [123], and other calculations
[4–6,30,42,124] using (semi-)empirical potentials. Most of
our calculation results are in good agreement with experi-
mental data or DFT calculations. Experimental information
on elastic constants of two SiO2 polymorphs, α-quartz [125]
and α-cristobalite [126], is available and compared with
the present calculation and other calculations [6,42,127]
in Table XII. Clearly, the classical pairwise fixed-charge
potentials (BKS [6,127] and TTAM [127]) reproduce the
elastic constants better than the recently developed potentials
based on many-body and charge equilibration schemes (the
present one and COMB2 [42]), probably because of the
smaller number of properties considered during parameter
fitting.
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FIG. 4. Calculated pressure-induced structural changes in (a) rutile and (b) anatase, in comparison with experimental data [113,114].

Most SiO2 structures are composed of corner-sharing
tetrahedral SiO4 units. The structures are similar to each other
and only differ in the connectivity of the basic tetrahedral
units and hence show only minimal structural energy differ-
ences [123]. It is well known that α-quartz is the most stable
structure among SiO2 polymorphs. Hence, we calculated the
cohesive energy of α-quartz and energy differences between
α-quartz and other polymorphs, and compared them with
experimental data [128,129], DFT calculation [123], and other
calculations [5,42] as shown in Table XIII. The calculated
cohesive energy of α-quartz is −20.0043 eV/SiO2, close
to the experimental value −19.23 eV/SiO2, and the energy
differences between α-quartz and other polymorphs according
to our potential are in reasonable agreement with experimental
data and/or DFT calculation except for stishovite. Stishovite
has octahedral SiO6 basic unit in contrast to other polymorphs.
This structural difference of stishovite makes a noticeable
energy difference compared to other polymorphs, as shown in
our calculation as well as in the DFT and COMB2 calculations.

TABLE X. Average charges (e) of Ti and O atoms in individual
titanium oxide phases according to the present 2NNMEAM + Qeq
potential.

Phase Ti O

TiO2-rutile +1.408 −0.704
TiO2-anatase +1.409 −0.705
TiO2-brookite +1.408 −0.703
TiO2(B) +1.405 −0.703
TiO2-hollandite +1.405 −0.702
TiO2-ramsdellite +1.403 −0.702
TiO2-columbite +1.407 −0.703
TiO2-baddeleyite +1.405 −0.702
TiO2-cotunnite +1.391 −0.695
Ti6O11 +1.378 −0.752
Ti4O7 +1.364 −0.779
Ti3O5(L) +1.355 −0.813
Ti3O5 (H ) +1.362 −0.817
γ -Ti3O5 +1.349 −0.809
Ti2O3 +1.314 −0.876
α-TiO +1.076 −1.076
γ -TiO +1.121 −1.121

However, it should be noted that the energy difference by our
calculation is much larger than other calculations.

As mentioned already, the phase diagram of the Si-O binary
system shows that only SiO2 compounds exist in the whole
compositional range. This means that no other compound
with different stoichiometric compositions should exist as a
stable compound on the composition vs enthalpy of formation
plot at 0 K. To confirm this, we calculate the enthalpy of
formation of artificial SiO compound phases (NaCl-type B1,
CsCl-type B2, and ZnS-type B3 structure) and check whether
our potential reproduces these compound phases as meta
or unstable phases. Figure 5 shows calculated enthalpy of
formation of B1, B2, and B3 SiO and stable SiO2 phases
at 0 K. The data points for B1, B2, and B3 are all above the
line connecting pure Si and stable SiO2, which means that B1,
B2, and B3 SiO phases are not stable according to the present
potential.

The (0001) surface energy values are available [130] for α-
quartz from first principles, and a comparison is made with the
present calculation (Table XIV) to examine the transferability
of the potential. It should be mentioned here that the simulation
sample for the (0001) surface has two surfaces, one at the top
and the other at the bottom of the sample. One is Si terminated,
while the other is O terminated. According to our potential, the
Si-terminated surface is unstable (the outmost Si layer tends to
change its position with the O layer). The present calculation
for the Si/O-terminated surface is carried out for the unrelaxed
structure, while calculations for the other surfaces and point
defects are for relaxed structures. The cleaved surface is the
O-terminated surface without reconstruction. Our potential
generally underestimates the surface energy of α-quartz and
fails to reproduce the reconstruction on the (0001) surface. The
information on the defect formation energy is not available
even for the α-quartz, except the first-principles value [131]
for anion Frenkel defect in noninteracting condition. Similar
calculations of point defect formation energy are carried out
as in the rutile for future comparisons, and the results are
presented in Table XV.

Pressure-induced structural changes of SiO2 polymorphs
(α-quartz, α-cristobalite, and stishovite) are investigated
as presented in Fig. 6, in comparison with experimental
data [115,118,122]. Our potential overestimates the effect of
pressure on the lattice parameters and volume of α-quartz,

144110-13



LEE, LEE, BASKES, AND LEE PHYSICAL REVIEW B 93, 144110 (2016)

TABLE XI. Lattice parameters and bulk modulus of SiO2 polymorphs according to the present 2NNMEAM + Qeq potential, in comparison
with experimental data, DFT calculation, and other potentials, COMB2, MEAM, MS-Q, BKS, and TTAM (Q: quartz; C: cristobalite; T:
tridymite). The rRMSE (%) of calculated lattice parameters (LP) and bulk modulus (B) with respect to available experimental data is presented
in the last two rows.

2NNMEAM + Qeq Expt. DFT [123] COMB2 [42] MEAM [124] MS-Q [30] BKS [6] TTAM [4,5]

α-Q a (Å) 5.0446 4.916 [115] 4.8992 4.856 4.780 4.9796 4.941 5.02
c (Å) 5.4662 5.4054 [115] 5.3832 5.316 5.258 5.4268 5.449 5.53

B (GPa) 35 37 [115] 35 64 35 41 39
β-Q a (Å) 5.1073 4.9977 [116] 5.0261 5.000 5.1195 5.17

c (Å) 5.5689 5.4601 [116] 5.5124 5.459 5.4353 5.73
B (GPa) 149 133 233 134

α-C a (Å) 4.9663 4.972 [118] 4.9751 4.98 4.570 4.9336 4.890 [124] 4.96
c (Å) 6.5652 6.922 [118] 6.9261 6.94 6.535 6.4706 6.530 [124] 6.68

B (GPa) 12 12 [118] 13 17 17 24 [124] 20
β-C a (Å) 7.0088 7.159 [119] 7.13 6.9093 7.07

B (GPa) 15 16 [119] 14 19
i-C a (Å) 7.4540 7.352 7.360

B (GPa) 174 129 123
β-T a (Å) 8.7254 8.74 [117] 8.9766

b (Å) 4.9121 5.04 [117] 5.0084
c (Å) 8.3730 8.24 [117] 8.1786

B (GPa) 32 31
i-T a (Å) 5.2700 5.1908 5.16 5.0101 5.37

c (Å) 8.6038 8.4702 8.43 8.1391 8.75
B (GPa) 174 140 139 138

Coesite a (Å) 7.2750 7.1356 [120] 7.0672 7.2077 7.23
b (Å) 12.4905 12.3692 [120] 12.2907 12.5370 12.74
c (Å) 7.3033 7.1736 [120] 7.1406 7.2646 7.43
β (°) 120.688 120.34 [120] 120.416 120.13 120.8

B (GPa) 94 96 [120] 94 108
Keatite a (Å) 7.5698 7.464 [121] 7.4669 7.5462

c (Å) 8.9700 8.620 [121] 8.5639 8.2529
B (GPa) 65 52

Stishovite a (Å) 4.1818 4.1797 [122] 4.1636 4.2382 4.26
c (Å) 2.5992 2.6669 [122] 2.6696 2.6154 2.75

B (GPa) 322 313 [122] 293 299
rRMSE of LP (%) 2.2 0.8 1.0 4.3 2.4 3.0 2.7
rRMSE of B (%) 4.0 7.8 59.4 29.7 71.1 31.6

while describing well the same properties of α-cristobalite
and stishovite.

We also calculate the average charges of Si and O atoms
in SiO2 polymorphs, as listed in Table XVI. As mentioned

already, most SiO2 structures consist of SiO4 basic tetrahedral
units, except stishovite of which the basic unit is the SiO6

octahedral. Thus, we can notice that the average charges
of Si in most SiO2 polymorphs have similar values, around

TABLE XII. Elastic constants (GPa) of SiO2 α-quartz and α-cristobalite according to the present 2NNMEAM + Qeq potential, in
comparison with experimental data and other potentials, COMB2, BKS, and TTAM.

α-quartz α-cristobalite

2NNMEAM+ Expt. COMB2 BKS TTAM 2NNMEAM+ Expt. COMB2 BKS TTAM
Qeq [125] [42] [6] [6] Qeq [126]. [42] [127] [127]

C11 97 87 99 91 72 38 59 137 65 48
C33 64 106 111 107 91 51 42 118 38 35
C12 15 7 5 8 9 10 4 18 7 6
C13 9 12 38 15 12 − 10 − 4 43 − 1 − 4
C44 37 58 42 50 40 47 67 55 70 58
C66 41 40 47 41 32 24 26 29 28 20
rRMSE 52.8 90.4 13.2 21.1 89.1 508.9 43.8 25.3
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TABLE XIII. Cohesive energy of α-quartz and the energy differences between α-quartz and other SiO2 polymorphs calculated according
to the present 2NNMEAM + Qeq potential, in comparison with experimental data, DFT calculations, and other calculations, COMB2 and
TTAM.

�Eα−quartz→phase (eV/SiO2)

Phase 2NNMEAM + Qeq Expt. [128,129] DFT [123] COMB2 [42] TTAM [5]

α-quartz − 20.0043 − 19.23 − 25.964 − 20.63 − 22.2
β-quartz +0.001 +0.051 +0.026 +0.108 +0.063
α-cristobalite +0.002 +0.030 +0.025 +0.049 +0.188
β-cristobalite +0.010 +0.054 +0.033 +0.212
i-cristobalite +0.028 +0.061 +0.500
β-tridymite +0.016 +0.034 +0.635
i-tridymite +0.032 +0.045 +0.259
Coesite +0.040 +0.030 +0.012 +0.082
Keatite +0.001 +0.022
Stishovite +3.451 +0.105 +1.196 +0.048

+1.2e. Those values are comparable with the average charge
of Si in α-quartz from MS-Q (+1.32e) [30] and ReaxFF
(+1.35e) [59], while COMB2 [42] yields a larger value,
+2.92e. BKS [6] and TTAM [4,5] use an effective fixed charge,
+2.4e, for all Si atoms and −1.2e for all O atoms in SiO2

polymorphs.

D. Thermal stability and thermal properties

All the properties calculated in previous sections are 0 K
properties. According to our experience, so many potentials
that perform well at 0 K often fail at finite temperatures. The
representative example of the failure is a transformation of
the structure into an unknown structure, which decreases the
energy to a level that makes the unknown structure a stable
phase on the phase diagram. In this case, we cannot use the
potential for finite temperature simulations.

To check the performance of our potentials at finite
temperatures, we examine the energy and structural changes
of all the compound phases considered, during heating. The
initial structures of individual compound phases relaxed at
0 K are heated to 3000 K, increasing the temperature by 200 K

Expt.

FIG. 5. Enthalpy of formation of silicon oxides according to the
present 2NNMEAM + Qeq potential, in comparison with experimen-
tal data [129]. The reference state is diamond Si and O2 gas.

and equilibrating the structures (containing 2000-4000 atoms)
using a molecular dynamics simulation for 10 picoseconds at
each temperature with an N -P -T ensemble. Then, the heated
structures at each temperature are rapidly cooled to 0 K to
see whether the initial 0 K structures have recovered. If the
potentials perform correctly, one can expect that the internal
energy of individual phases would monotonically increase
with an increasing temperature and abruptly change when a
transformation to a more stable, known structure or melting
occurs. The point to look for during the heating is whether
any compound phase transforms to an unknown structure,
decreasing the energy and thus making itself the most stable
phase at the corresponding composition. By confirming the
recovery of initial (0 K) structure after rapid cooling from finite
temperatures, we want to confirm that the potential does not
generate undesirable structures during dynamic simulations (at
finite temperatures) and can be used for dynamic simulations
in the whole temperature range. Thermal properties such as
the thermal expansion coefficient and heat capacity are also
calculated from this heating simulation.

Figure 7(a) shows the change of internal energy of TiO2

polymorphs with an increasing temperature, and Fig. 7(b)
shows the internal energy of individual structures rapidly
cooled from each heating temperature to 0 K. All the TiO2

polymorphs show monotonic increases of internal energy
with temperature and all the polymorphs except cotunnite
recover the initial 0 K energy when rapidly cooled to
0 K from temperatures below melting temperature. According
to the present potential, the cotunnite transforms to another

TABLE XIV. Calculated (0001) surface energy (J/m2) of α-
quartz in comparison with first-principles data [130]. The Si-
terminated surface is unstable. The calculation is carried out for an
unrelaxed structure with a Si-terminated and an O-terminated surface
in each side of the sample. The cleaved surface is O-terminated
surface without reconstruction.

Surface 2NNMEAM + Qeq DFT [130]

Si/O terminated 1.39 3.42
Cleaved 0.65 2.23
Reconstructed 0.39
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TABLE XV. Calculated Schottky (S), cation Frenkel (CF), and
anion Frenkel (AF) formation energy (eV) of α-quartz, in comparison
with first-principles data [131]. Two types of relative position of
point defects are considered, where point defects (Si vacancy and
two O vacancies for Schottky, Si vacancy and Si interstitial for cation
Frenkel, and O vacancy and O interstitial for anion Frenkel) are
neighboring or distanced and noninteracting.

Defect 2NNMEAM + Qeq DFT [131]

SNeighboring 2.49
SNoninteracting 1.63
CFNeighboring 2.50
CFNoninteracting 4.94
AFNeighboring 1.52
AFNoninteracting 4.72 7.0

structure with a slightly different lattice parameter c during
heating. However, the transformed structure remains as a
structure with the highest energy among the TiO2 polymorphs
considered. The slope of internal energy vs temperature curves
corresponds to the specific heat. All the TiO2 polymorphs yield
a similar value of specific heat, around 77 J/mole K, with
the present potential, while the experimental value [132] is
55.06 and 55.52 J/mole K for rutile and anatase, respectively.
The volumetric thermal expansion coefficient is calculated
to be 2.0 × 10−5, 2.7 × 10−5, and 2.3 × 10−5 K−1 for rutile,
anatase, and brookite, respectively, which is comparable with
experimental values, 2.46 × 10−5 and 1.45 × 10−5 K−1 for
rutile [132] and anatase [87], respectively.

In a way similar to the TiO2 polymorphs, we examine the
change in internal energy of other TixOy compound phases
as shown in Figs. 7(c) and 7(d). All the compounds except
α- and γ -TiO show a monotonic increase of internal energy
with an increasing temperature before melting and recover
the initial 0 K energy when rapidly cooled to 0 K. However,
as mentioned in Sec. III B, α- and γ -TiO are mechanically
unstable, that is, they do not maintain the crystalline structure
at finite temperatures but transform to amorphous phases with
an energy drop. The enthalpy of amorphous TiO at 0 K is
below the line that connects the enthalpy of formation of pure
Ti and Ti2O3 in the enthalpy of formation vs composition plot
(Fig. 3) by about 0.1 eV/atom. Even though the 0.1 eV/atom

TABLE XVI. Average charges (e) of Si and O in SiO2 polymorphs
according to the present 2NNMEAM + Qeq potential.

Phase Si O

α-quartz +1.204 −0.602
β-quartz +1.201 −0.601
α-cristobalite +1.204 −0.602
β-cristobalite +1.199 −0.600
i-cristobalite +1.186 −0.593
β-tridymite +1.196 −0.598
i-tridymite +1.186 −0.593
Coesite +1.210 −0.605
Keatite +1.200 −0.600
Stishovite +1.224 −0.612

(a)

(b)

(c)

Expt.

Expt.

Expt.

Expt.

Expt.

Expt.

Expt.

Expt.

Expt.

FIG. 6. Calculated pressure-induced structural changes in (a)
α-quartz, (b) α-cristobalite, and (c) stishovite, in comparison with
experimental data [115,118,122].

is a small amount compared to the enthalpy of formation
values of Ti oxides (around 3 eV/atom), we must pay attention
to the structural stability when using the present potential
for a molecular dynamics simulation near the equiatomic
composition (xO = 0.5) of the Ti-O binary system.
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FIG. 7. Change of internal energy of [(a), (b)] TiO2 polymorphs, [(c), (d)] TixOy compounds, and [(e), (f)] SiO2 polymorphs with [(a), (c),
(e)] increasing temperature and [(b), (d), (f)] after rapid cooling to 0 K from each temperature.

Figures 7(e) and 7(f) show the change of internal energy
for SiO2 polymorphs during heating and after rapid cooling
to 0 K from each temperature. The energy of each phase
except stishovite increases monotonically with an increasing
temperature without any unreasonable decrease and shows
an abrupt change with melting. Stishovite has much higher
energy than other polymorphs and transforms to an unknown
(amorphouslike) structure during heating according to our
potential. However, the transformed structure remains as
the highest energy structure among the SiO2 polymorphs
considered. The calculated specific heat of α-quartz is
76 J/mole K at 300 K, while the experimental data [133] is
50–75 J/mole K in a temperature range of 300–800 K. The
volumetric thermal expansion behavior of α-quartz according
to the present potential is somewhat complicated. The volume

decreases with an increasing temperature at −8.6 × 10−6 K−1

in the range of 100–1000 K and then slightly increases
at 8.4 × 10−7 K−1, while a monotonic increase is observed
experimentally with a volume expansion coefficient of 3.5 ×
10−5 K−1 at 300 K [133]. When rapidly cooled to 0 K
from each heating temperature, the energy and structure of
some phases are not completely recovered. We believe that
this is because the structures of SiO2 polymorphs are quite
complicated and distorted, and also because the mutual energy
differences among the polymorphs are small (see Table XI).
It should be also mentioned that SiO2 is mostly grown and
used in an amorphous state. Several structures of amorphous
SiO2 can be generated by rapidly cooling liquid samples.
To obtain a representative amorphous SiO2 structure, several
samples were generated by cooling to 300 K and annealing
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FIG. 8. Snapshots of molecular dynamics simulation for an
oxidation reaction of a Ti nanowire, (a) initial state, after (b) 100,
(c) 200, and (d) 500 picoseconds at 300 K, with coloring by charge
state. Small spheres represent O atoms, while large spheres represent
Ti atoms.

for 300 picoseconds at the same temperature with an N -P -T
ensemble. Out of the generated amorphous structures, the
structure with the closest peak positions in radial distribution
functions for Si-Si (3.12 Å), Si-O (1.62 Å), and O-O
(2.65 Å) bonding to experimental information [134] is selected
as the representative amorphous structure. The energy of
the amorphous SiO2 is calculated to be higher than that of
α-quartz by 0.33 eV/SiO2 and the density of amorphous
SiO2 is calculated to be 2.00 g/cm3 (experimental value is
2.20 g/cm3) [134]. Corresponding values by COMB2 [42]
are 0.13 eV/SiO2 and 2.458 g/cm3. The ratio between the
density of amorphous SiO2 and α-quartz according to the
present potential is 0.83, which is in a good agreement with
experimental value, 0.83 [134].

Finally, as a means to demonstrate the power of the variable
charge potential, the oxidation reaction of Ti nanowire and the
Si/SiO2 (α-quartz) interface structure are simulated, as shown
in Figs. 8–10. Here, the color represents the charge state.
Figure 9 compares the oxidation rate on two Ti nanowires
with different surface planes (101̄0) or (112̄0). It is shown
that the nanowire with (112̄0) surface planes reacts faster
with oxygen molecules at least at the beginning stage of the
oxidation reaction. The surface energy of the (101̄0) and the
(112̄0) planes is calculated [68] to be 2145 and 2352 erg/cm2,
respectively. The present results show that the surface with
higher energy may react faster than the surfaces with relative
lower energy, but detailed analysis is left as a future study. One
can expect that the effects of surface orientation, existence of
grain boundary, alloying elements on the oxidation behavior

FIG. 9. Number of charged oxygen atoms along oxidation time
for two Ti nanowires with different surface planes, (101̄0) and (112̄0).
The oxygen atoms negatively charged more than −0.5e are counted as
charged oxygen atoms. The surface energy of the (101̄0) and (112̄0)
plane is calculated to be 2145 and 2352 erg/cm2, respectively [68].

of metals, as well as the interfacial structure of heterogeneous
systems can be investigated using the variable charge potential.
The energy of Si/SiO2 interface (a) and interface (c) in
Fig. 10 is calculated to be 3.12 and 2.84 J/m2, respectively, but
these are not systematically sought minimum energy surfaces
between Si and α-quartz.

FIG. 10. Simulated interface structure between Si(010) and α-
quartz SiO2(010), (a) relaxed at 0 K and (b) annealed at 300 K
during 100 picoseconds. Another configuration with a slightly lower
interfacial energy obtained by shifting α-quartz layer, (c) relaxed at
0 K and (d) annealed at 300 K during 100 picoseconds. The color
represents the charge state, with the same scale bar as in Fig. 8. The
calculated interfacial energy of interface (a) is 3.12 J/m2, while that
of interface (c) is 2.84 J/m2.
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IV. CONCLUSION

We present an interatomic potential model that describes
metallic, covalent, and ionic bonding simultaneously in a
form that combines the existing 2NNMEAM and the concept
of Qeq. We complete an electrostatic energy model by
newly developing a mathematical form for the atomic energy
and combining selected computational techniques for energy
minimization, summation of Coulomb interaction, and charge
representation in an optimized way. We pay special attention
to the removal of already reported shortcomings in the original
Qeq and also to computational efficiency. The potentials for the
Ti-O and Si-O binary systems reproduce the structural, elastic,
and thermodynamic properties of a wide range of titanium
oxides and silicon oxides, in reasonable agreement with exper-
iments and DFT calculations, and perform reasonably also for
defect properties and at high pressures and temperatures. The
proposed 2NNMEAM + Qeq potential model will be a good
companion interatomic potential model to existing COMB and
ReaxFF and is expected to perform better for multicomponent
metallic oxide systems.
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APPENDIX: DETAILS IN USING THE
SPLIT-CHARGE MODEL

If using the split-charge model, the total electrostatic energy
Eq. (13) can be rewritten by substituting Eq. (17),

EES
total =

N∑
i

⎡
⎣

Rij <Rbond
ij∑

j

q̄j i

⎤
⎦χi + 1

2

N∑
i,j

⎡
⎣Rik<Rbond

ik∑
k

q̄ki

⎤
⎦

×
⎡
⎣

Rlj <Rbond
lj∑

l

q̄lj

⎤
⎦Jij . (A1)

For a given configuration of atoms, we can define all the
split charges by pairing atoms within the cutoff distance, Rbond

ij ,
avoiding any duplication from the opposite direction of charge
flow. For a system with a total number of bonds M , we can

generalize Eq. (A1) using index of bonds ab or cd as

EES
total =

M∑
ab

q̄ab(χb − χa) + 1

2

M∑
ab,cd

q̄abq̄cd [(Jac − Jad )

− (Jbc − Jbd )]. (A2)

The coefficient of the first-order term in Eq. (A2) can be
determined by combining q̄ab and q̄ba in Eq. (A1). Similarly,
the coefficient of the second-order term in Eq. (A2) is
determined by assembling possible combinations of the bond
index. We can construct a matrix equation based on Eq. (A2),

EES
total = q̄Tb + 1

2 q̄TAq̄, (A3)

where the M dimensional column vectors q̄ and b are the
set of split charges and coefficients of the first-order term,
respectively, and the M by M symmetric matrix A contains
coefficients of the second-order term. The total electrostatic
energy can be minimized by solving the following linear
equation:

∂EES
total

∂q̄
= b + Aq̄ = 0 (A4)

using the CGM.
In addition to the concept of the split charge, Nistor

et al. [74] also introduce an additional term to the electrostatic
energy using a new binary parameter κij ,

EES
total =

N∑
i

qiχi + 1

2

N∑
i,j

qiqjJij +
M∑
ij

q̄2
ij κij , (A5)

where κij can be interpreted as a bond hardness, in order to
improve accuracy of predicting Muliken charges. However,
Nistor et al. [75] and Mathieu [135] point out that it can lead
to an abrupt change in energy and atomic charges during bond
breaking, particularly when interatomic distances are near
Rbond. Mathieu proposed an idea where the split charge can
vanish smoothly as interatomic distances get close to a thresh-
old value (bond breaking limit) by modifying bond hardness
κij to be dependent on interatomic distances. We, however,
determine that this bond hardness term is not essential because
the analogous physical meaning is sufficiently included in the
presently modified electrostatic energy expression. Moreover,
the expense to avoid the discontinuous changes of charge and
energy during bond breaking is not trivial. Therefore, in this
study, we do not include the bond hardness term but just take
the concept of the split charge.
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