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Abstract

The hemocompatibility of plasma-treated, silicon-incorporated, diamond-like carbon (Si-DLC) films was investigated. Si-DLC films
with a Si concentration of 2 at.% were prepared on Si (100) or Nitinol substrates using a capacitively coupled radiofrequency plasma-
assisted chemical vapor deposition method using a mixed gas of benzene (C6H6) and diluted silane (SiH4:H2 = 10:90). The Si-DLC films
were then treated with O2, CF4 or N2 glow discharge for surface modification. The plasma treatment revealed an intimate relationship
between the polar component of the surface energy and its hemocompatibility. All in vitro characterizations, i.e. protein absorption
behavior, activated partial thromboplastin time measurement and platelet adhesion behavior, showed improved hemocompatibility of
the N2-- or O2-plasma-treated surfaces where the polar component of the surface energy was significantly increased. Si–O or Si–N surface
bonds played an important role in improving hemocompatibility, as observed in a model experiment. These results support the impor-
tance of a negatively charged polar component of the surface in inhibiting fibrinogen adsorption and platelet adhesion.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Diamond-like carbon (DLC) film has emerged as a
promising coating layer for blood-contacting applications
owing to its superior mechanical properties, chemical inert-
ness and hemocompatibility [1–7]. Comparative studies
have reported that DLC is more hemocompatible than
other biomaterials such as Ti, TiN, TiC, CN and polymeth-
ylmethacrylate (PMMA) [1,2,8,9]. Because biological reac-
tions essentially occur on the surface, the effects of the
atomic bond structure or the surface properties of DLC

films on their hemocompatibility have been thus a major
concern [1,2,10]. However, no consistent relationship has
been found between hemocompatibility and the atomic
bond structure of the films or the wettability of their sur-
faces. For example, Kwok et al. [11] and Huang et al.
[12] reported that surfaces with lower wetting angles had
improved blood compatibility. Ma et al. also reported the
higher albumin to fibrinogen absorption ratios on surfaces
with higher surface energy [13]. However, Leach et al.
observed self-contradictory behavior in hydrophilically
coated guide wires and catheters [14]. They reported that
hydrophilically coated guide wires suppressed clot deposi-
tion while the same coating on catheters enhanced clot
deposition. In contrast, Hasebe et al. observed that hemo-
compatibility was improved in fluorine-incorporated DLC
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films [15,16], where the surface energy decreased with fluo-
rine incorporation. Jones et al. explored platelet attach-
ment on Ti, TiN, TiC and DLC surfaces [17]. The
greatest platelet spreading was seen on the more hydro-
philic surfaces, even if these authors did not consider the
chemical effects of different materials.

In this study, we investigated the hemocompatibility of
surface-modified silicon-incorporated DLC (Si-DLC) films
using a plasma surface treatment method. The plasma sur-
face treatment enabled us to address the role of surface
chemical bonds. It was recently reported that Si incorpora-
tion into DLC films improves both corrosion resistance in
body fluid conditions and mechanical reliability, with
higher interfacial toughness [18,19]. Si-DLC coating is thus
a strong candidate as a protective layer for implant materi-
als to avoid the release of metal ions. Plasma treatment of
the surface using O2, N2 or CF4 glow discharge resulted in
a variety of surfaces ranging from hydrophilic to hydro-
phobic, corresponding to changes in the polar and disper-
sive components of the surface energy [20]. In vitro
hemocompatibility tests revealed that hydrophilic surfaces
with greater polar components of the surface energy sup-
pressed fibrinogen adsorption and platelet adhesion and
activation. A model experiment revealed that Si–O or Si–
N bonds on the surface play an important role in improv-
ing hemocompatibility, presumably due to the negatively
charged polar component.

2. Materials and methods

2.1. Si-DLC deposition

The Si-DLC films were deposited on Si (100) or electro-
chemically polished Nitinol (NiTi) substrates using a radio-
frequency plasma-assisted chemical vapor deposition (RF–
PACVD) method. Details of the deposition system have
been reported previously [18,19]. The films on the Si wafers
were used for surface property characterization via wetting
angle measurement and X-ray photoelectron spectroscopy
(XPS) analysis. All in vitro hemocompatibility tests were
performed using the films deposited on the Nitinol plates.
A mixture of benzene and diluted silane (SiH4:H2 = 10:90)
was used as the precursor gas. The substrates were initially
cleaned with an argon discharge for 15 min at a bias volt-
age of –400 V and a pressure of 0.49 Pa. An interlayer of
amorphous silicon (a-Si:H) with a thickness of nearly
5 nm was deposited on the substrates to ensure better adhe-
sion of the Si-DLC films. The Si-DLC film was then depos-
ited at a bias voltage of –400 V for 11 min 40 s at a pressure
of 1.33 Pa. The film thickness of the Si-DLC films was
0.55 lm as measured using an alpha step profilometer.
Rutherford backscattering spectrometry showed that the
Si concentration in the films was 2 at.%. The structure
and mechanical properties of Si-DLC film have previously
been investigated in detail [18].

The Si–DLC films were then treated with RF glow dis-
charge of various gases, i.e. such as O2, N2 and CF4, in

the same PACVD chamber. The plasma treatments were
performed for 10 min at a bias voltage of –400 V and a
pressure of 1.33 Pa. The plasma treatment did not change
the film thickness significantly except for the O2 plasma
treatment. The O2 plasma treatment etched the Si-DLC
films and reduced the film thickness to 0.31 lm. The sur-
face properties and chemical bonds of the plasma-treated
Si-DLC films were reported by Roy et al. [20].

2.2. Wetting angle and XPS measurements

The surface energies of the samples were characterized
according to the method of Owens [20–22]. Young’s equa-
tion for wetting of a solid surface by a liquid can be
expressed in terms of the dispersive and polar components
of the surface energy of liquid and solid as follows:
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where h is the contact angle between the solid and liquid
and ctv, csv are the free energies of the liquid and solid
against their saturated vapor, respectively. The superscripts
d and p refer to the dispersive and polar components,
respectively. The wettability of the film surfaces was char-
acterized by measuring the h of two different liquids with
known values of dispersive and polar components of the
surface energy by solving the simultaneous equations. In
the present work, deionized water and formamide were
used [21]. The contact angle measurements were performed
using a contact angle goniometer (Rame-Hart Inc., USA).
The reported contact angles in this paper correspond to an
average of 10 measurements.

XPS measurements of the surface were performed using
a Physical Electronics PHI 5800 ESCA system. The X-ray
source used was Al Ka at 1486.6 eV and the anode was
maintained at 250 W, 10 kV and 27 mA. The XPS measure-
ments were done at a chamber pressure of 2 � 10�8 Pa. For
high-resolution measurement, analyzer pass energy was
58.70 eV (energy resolution 0.125 eV). The spot size of the
beam was 400 lm� 400 lm. The calibrations of peak posi-
tion were done by taking the C1s peak at 284.6 eV. The
curve fittings were carried out with a mixture of Gaussian
and Lorentzian functions. The percentages of individual
peaks were determined using the peak areas of individual
peaks and the corresponding atomic sensitivity factor of
the element [23].

2.3. Protein adsorption tests

Plasma protein adsorption tests were performed by
treating the samples with bovine serum albumin (Sigma–
Aldrich, St. Louis, MO, USA) and fibrinogen (Sigma–
Aldrich) solutions and measuring the absorbance through
enzyme-linked immunosorbent assay (ELISA) analysis.
The proteins were dissolved separately in phosphate-buf-
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fered saline (PBS, pH 7.4) at concentrations of 3 and
0.2 mg ml–1, respectively. The above concentrations of
albumin and fibrinogen were chosen based on their concen-
trations in human blood (albumin: 35–55 mg ml–1 and
fibrinogen: 2–4 mg ml–1). The samples (1 cm � 1 cm) were
initially rinsed with a PBS solution and placed in the pro-
tein solutions at 37 �C for incubation times of 5 and
60 min. After incubation, the samples were carefully
washed in distilled water to completely remove unadsorbed
proteins. The washed samples were treated with 5% sodium
dodecyl sulphate and rinsed at 37 �C overnight followed by
ultrasonication for 10 min to desorb the proteins from the
specimen. The resultant solutions were loaded into 96-well
plates along with Micro BCA working solution and
incubated at 60 �C for 1 h. The absorbance of each well
was measured at 562 nm using an ELISA reader and the
adsorbed protein concentrations were evaluated using
calibration curves.

2.4. Activated partial thromboplastin time (aPTT)

measurements

Fresh human blood mixed with sodium citrate was cen-
trifuged at 2000g for 10 min to obtain platelet-poor plasma
(PPP). The specimens (1 � 1 cm) were incubated in PPP at
37 �C for 30 and 60 min. The reaction plasma was treated
with Actin FS solution and 0.025 M CaCl2 solution in an
analyzer at 37 �C to determine the aPTT. The aPTT mea-
surements were done using a Sysmex CA-50 Instrument.

2.5. Platelet adhesion test

Human whole blood (45 ml) was collected from healthy
volunteers who had not taken any medication for at least
10 days. The blood was mixed with 5 ml of acid–citrate–
dextrose, and platelet-rich plasma (PRP) was isolated by
centrifugation at 180g for 15 min, which separated blood
cells. Subsequently, a portion of the PRP was centrifuged
at 2000g for 10 min to obtain PPP. The PRP platelet den-
sity was adjusted to 3.0 � 105 ll–1 by dilution with PPP.
Sample disks were washed with PBS and then incubated
in 24-well plates containing 1 ml of adjusted PRP at
37 �C for 30 min in an atmosphere containing 5% CO2

gas. Thereafter, the supernatant was discarded and the
samples were washed with PBS. Adherent platelets were
then fixed for 60 min at room temperature in 0.8 ml of
freshly prepared 1% glutaraldehyde. After fixation, the
samples were washed and dehydrated in a graded ethanol
series (20%, 40%, 60%, 80%, 90% and 100% for 15 min
each) as described by Frank et al. [24]. All dried materials
were examined by scanning electron microscopy (SEM; Siri-
on FEI) and fluorescence microscopy (Eclipse 50i, Nikon,
Tokyo, Japan). The morphology of adherent platelets
was observed by SEM. The platelet-covered area per unit
area (67,500 lm2) was investigated via photographs using
computer-aided image analysis software (Image-Pro-Plus,
Media Cybernetics, USA). Measurements were performed

at 10 randomly selected areas on each surface. The results
of the experiments are expressed as the means of coverage/
unit area ± standard deviation. Values were compared by
t-test (Student’s t-test in Microsoft Excel), and differences
were considered statistically significant when P < 0.05.

3. Results and discussion

Fig. 1 shows the water contact angles and surface ener-
gies of the Si substrate and Si-DLC and plasma-treated Si-
DLC films. The O2-plasma-treated Si-DLC films have the
most hydrophilic surface, with a water contact angle of
13.4�, whereas a hydrophobic surface was obtained by
CF4 plasma treatment. The Si substrates had a high polar
component in their surface energies, due to the native sili-
con oxide layer on their surface. The Si-DLC coatings
decreased the polar component while the dispersive compo-
nent was slightly increased. These plasma treatments of the
Si-DLC coatings mostly affect the polar component of sur-
face energies. The dispersive component was found to
remain nearly constant for all the films except the O2-
plasma-treated films. The hydrophobicity of the CF4-
plasma-treated surfaces originates from a substantial
decrease in the polar component of the surface energy.
N2 plasma treatment increases the polar component by
about three times compared to that of the deposited Si-
DLC films, which results in a lower contact angle. O2

plasma treatment increased the polar component by about
five times compared to that of deposited Si-DLC films,
while the dispersive component was reduced to half of
the untreated value. The polar components attract the elec-
tric dipoles of water, which minimizes the interfacial energy
and lowers the water contact angle. Because of a possible
aging effect of the hydrophilic surface, we performed the
following in vitro hemocompatibility tests within 12 h of
the surface treatment.

The interaction of biomaterials with blood starts with
the adsorption of plasma proteins onto their surfaces.
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Fig. 1. Water contact angle and surface energies of plasma-treated Si-
DLC films.
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The first proteins that are adsorbed on the surface of bio-
materials are albumin, fibrinogen and fibronectin. Adsorp-
tion of albumin retards the adhesion and activation of
platelets, while adsorption of fibrinogen promotes platelet
adhesion and activation. The adsorbed fibrinogen is con-
verted into insoluble fibrin polymer, which finally results
in the formation of thrombus [13,25]. Fig. 2a and b show
the amounts of albumin and fibrinogen adsorption, respec-
tively, on Si-DLC and plasma-treated Si-DLC films after
incubation for 60 min. The plasma protein adsorption tests
showed higher albumin adsorption on all the O2-, N2- and
CF4-plasma-treated films without any considerable differ-
ence between them (see Fig. 2a). Fig. 2b shows the fibrino-
gen adsorption data for various Si-DLC surfaces. Because
of large error in the fibrinogen adsorption on the untreated
Si-DLC surface, no significant difference was observed

between the untreated and the plasma treated Si-DLC
coatings. However, fibrinogen adsorption on the O2-
plasma-treated Si-DLC films is distinctly smaller than
those on the CF4- and N2-plasma-treated Si-DLC films
(Fig. 2b).

Docoslis et al. observed similar behavior of albumin
adsorption for hydrophobic talc and hydrophilic silica
films [26]. They indicated that the amount of adsorbed pro-
tein on a material surface is related to the ratio of favorable
macroscopic attractive forces to unfavorable microscopic
repulsive forces and to the average ratio of favorable
(attractive) and unfavorable (repulsive) orientations of
the protein molecules. Protein adsorption on a biomaterial
surface is also dependent on the specific adsorption and
desorption rate constants. For hydrophobic talc, they
obtained a higher ratio of attractive to repulsive forces,
which gave rise to the higher albumin adsorption of talc.
The high albumin adsorption of CF4-plasma-treated Si-
DLC films in this study can be explained by the strong
hydrophobic interactions between the protein molecules
and hydrophobic film surfaces. Increases in binding energy
of 5.3 and 12.8% for human serum albumin (HAS)–talc
and HAS–silica, respectively, have also been observed
[27]. It can be thus said that the higher albumin adsorption
of N2- and O2-plasma-treated Si-DLC films is caused by a
higher polar component in their surface energy, as shown
in Fig. 1. Albumin with its hydrophilic nature is attracted
to these surfaces through electrostatic interactions.

While albumin adsorption increased for both hydropho-
bic and hydrophilic surfaces, fibrinogen adsorption is more
strongly dependent on surface properties, as proposed by
Slack and Horbett [28] and Ta et al. [29]. Slack and Horb-
ett observed that fibrinogen adsorption was lower on
hydrophilic glass compared with hydrophobic materials
such as polystyrene, polyethylene and silicone rubber. Pro-
tein adsorption from blood plasma is governed by the Vro-
man effect, which involves a complex series of adsorption
and displacement steps [30]. It was reported that adsorbed
fibrinogen molecules undergo a transition from a weakly
bound (displaceable) to a tightly bound (non-displaceable)
state most rapidly or effectively on polystyrene followed by
silicon rubber, polyethylene and finally glass [30]. Ta et al.
[29] proposed a strong hydrophobic interaction between
the D domains of fibrinogen and the highly ordered pyro-
lytic graphite (HOPG) surface, leading to a tightly bound
fibrinogen film. Conversely, the electrostatic interaction
between the negatively charged hydrophilic surface and
the positively charged aC domains of fibrinogen is weak
in nature due to the low degree of hydrophobicity. The
present results are consistent with these arguments, i.e.
the high fibrinogen adsorption of CF4-plasma-treated Si-
DLC films is due to the strong hydrophobic interaction
between fibrinogen molecules and the hydrophobic film
surface, whereas the low fibrinogen adsorption of O2-
plasma-treated Si-DLC films originates from the weaker
electrostatic interactions between fibrinogen molecules
and the hydrophilic film surface.
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Fig. 2. (a) Albumin adsorption of Si-DLC and plasma-treated Si-DLC
films after incubation for 60 min. (b) Fibrinogen adsorption of Si-DLC
and plasma-treated Si-DLC films after incubation for 60 min. (c) Albumin
to fibrinogen ratios of Si-DLC and plasma-treated Si-DLC films after
incubating for 5 and 60 min.
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The aPTT determines the ability of blood to coagulate
through the intrinsic coagulation mechanism. It measures
the clotting time from the activation of factor XII through
to the formation of fibrin clot [31]. The aPTT also governs
how a biomaterial affects the coagulation time. The enzy-
matic activities that lead to clot formation are measured
through aPTT measurement. In Fig. 3, the aPTT of
untreated Si-DLC film is compared with those of the
plasma-treated films for an incubation time 60 min. It is
evident that the O2-plasma-treated Si-DLC films had a
higher aPTT. This indicates that the O2-plasma-treated
Si-DLC films have a tendency to retard the intrinsic coag-
ulation activities of blood compared with the other sam-
ples, which is consistent with the protein adsorption
behavior. Similar behavior was observed with N2-plasma-
treated Si-DLC films. In contrast, CF4 plasma treatment
did not induce a notable change in aPTT when compared
with untreated Si-DLC film.

Platelet adhesion and activation on the surface of a bio-
material is the most essential character in determining the
hemocompatibility of a biomaterial. Low platelet adhesion
and activation denotes good hemocompatibility, while a

higher degree of platelet adhesion and activation should
result in the formation of a thrombus. Fig. 4 shows the
morphology of adherent platelets on the Nitinol and
plasma-treated Si-DLC surfaces. Activation of platelets
can be judged by changes in their morphology: as activa-
tion proceeds, the platelets lose their round shape, form
pseudopodia and spread on the biomaterial surface. In
the case of Nitinol substrates, most platelets on the surface
remained round, with only a few of the platelets seen in
high-magnification SEM losing their round shape (Fig.
4a). Pseudopodia formation is observed in the activated
platelets, as indicated by an arrow. On the Si-DLC film,
most platelets are clearly activated, as seen in Fig. 4b:
platelets spread on the surface (arrow in Fig. 4b) with tan-
gled pseudopodia. Similar behavior was observed on the
CF4-plasma-treated Si-DLC surface shown in Fig. 4c.
However, the degree of platelet activation was much smal-
ler on the N2- and O2-plasma-treated Si-DLC surfaces, as
shown in Fig. 4d and e, respectively. Low-magnification
SEM microstructures clearly show that most platelets kept
their round shape. Activation of platelets is barely
observed, although platelets of irregular shape can be seen
in the high-magnification SEM image. The platelet adhe-
sion area ratios are summarized in Fig. 5. The N2- and
O2-plasma-treated Si-DLC films were found to have con-
siderably reduced platelet adhesion compared with
untreated and CF4-plasma-treated Si-DLC films. This
result is consistent with the results of the protein adsorp-
tion and aPTT measurements.

The present results show that N2 or O2 plasma treat-
ment improved the hemocompatibility of Si-DLC film.
The major difference in the N2- or O2-plasma-treated Si-
DLC surfaces from the untreated surfaces is the surface
chemical bonds: N2-plasma-treated surfaces have C–N
bonds and Si–N bonds in addition to C–C and C–Si bonds,
while O2-plasma-treated surfaces have C–O and Si–O
bonds [20]. In order to explore the effects of each surface
bond on hemocompatibility, pure hydrogenated amor-
phous carbon (a-C:H or DLC) and hydrogenated amor-
phous silicon (a-Si:H) were prepared and treated with N2

and O2 glow discharge. a-C:H films were deposited using
benzene as the precursor gas. Diluted silane was used to
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Fig. 4. The morphology of blood platelets on (a) Nitinol substrate, (b) as-deposited Si-DLC, (c) CF4-plasma-treated Si-DLC, (d) N2-plasma-treated
Si-DLC films, and (e) O2-plasma-treated Si-DLC films.
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prepare the a-Si:H film. Other deposition and plasma-treat-
ment conditions were the same as those for the Si-DLC
films.

Fig. 6 shows the XPS analysis of the as-deposited and
the plasma-treated a-C:H and a-Si:H films. A small
amount of oxygen was observed in all films due to exposure

to ambient air before XPS measurement. However, it is evi-
dent that O2 plasma treatment of a-C:H results in the for-
mation of C–O surface bonds (Fig. 6b), while N2 plasma
treatment results in C–N and C„N bonds on the surface
(Fig. 6c). Similar behavior was observed with a-Si:H film
as shown in Fig. 6d–f. Si–O bonds and Si–N bonds domi-
nate on the surfaces that have undergone O2 and N2

plasma treatment, respectively. All the oxide and nitride
peaks (C–O, C„N, Six–Oy and Six–Ny) have large values
of full-width at half maximum (FWHM). The large value
of FWHM is presumably due to the distortion of the bond
by ion bombardment during plasma treatment. Fig. 7
shows the platelet adhesion surface area ratios of these
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Fig. 7. The platelet adhesion area ratios of a-C:H and a-Si:H surfaces with
and without O2 or N2 plasma treatment.
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specimens. Both N2 and O2 plasma treatment improve the
hemocompatibility of a-C:H and a-Si:H films. However,
the plasma treatment of a-Si:H films had more significant
effects in suppressing platelet adhesion, which reveals the
importance of the Si–N or Si–O bonds. This observation
can be understood if one considers the larger difference in
the electronegativity between Si and N (Dv = 1.14 on the
Pauling scale) and between Si and O (Dv = 1.54) than those
between C and N (Dv = 0.49) and between C and O
(Dv = 0.89). A higher degree of negatively charged polarity
is expected in Si–O and Si–N bonds than in C–N and C–O
bonds. The negatively charged polarity would suppress
platelet adhesion and fibrinogen adsorption as the platelets
and proteins tend to have a net negative zeta potential [16].
In this study, N2- or O2-plasma-treated Si-DLC surfaces
include Si–O and Si–N surface bonds, which results in a
higher degree of negative charge polarity.

Recently, Okpalugo et al. [32] and Ong et al. [33] studied
the effect of Si incorporation into DLC films on hemocom-
patibility. They observed that platelet adhesion was
suppressed as the Si concentration increased. This observa-
tion is closely related with the Si–O surface bonds, because
the surface oxygen concentration was observed to increase
with increasing Si concentration [33]. Ong et al. further
reported that the polar component of the surface energy
increased with Si concentration [33]. It is thus possible to
have higher surface polarization in films of higher Si con-
centration. Their observations support the present sugges-
tion that the negatively charged polar component caused
by Si–O surface bonds improves the hemocompatibility.

4. Conclusions

Surface modification of Si-DLC films by plasma treat-
ment enabled us to explore the effects of surface chemical
bonds on hemocompatibility. A hydrophilic surface was
obtained using N2 and O2 plasma treatment due to a
significant increase in the polar component. In contrast,
CF4 plasma treatment gives rise to a hydrophobic sur-
face with a low polar component. It was evident from
the results of the protein adsorption tests, aPTT mea-
surement and platelet adhesion test that the hydrophilic
surface with a large polar component of the surface
energy exhibits improved hemocompatibility. It was fur-
ther observed that Si–N and Si–O surface bonds are
more effective in improving the hemocomptibility than
C–O or C–N bonds. These observations support the
importance of the negatively charged polar component
of the surface energy in inhibiting fibrinogen adsorption
and platelet adhesion.
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